Abstract:
A cable bundling device includes a cable positioning and a wrapping mechanism. The cable positioning mechanism includes a first clamping member and a second clamping member, which are set in a working zone. The first and second clamping members function to respectively clamp ends of a cable. One of the wrapping mechanism and the cable positioning mechanism is selectively rotatable to have the bundling material loaded in the wrapping mechanism wrapped around the cable.
Abstract:
A shielded insertion and connection structure for a flat cable connector includes a receiving housing and a hold-down member. The receiving housing forms a receiving compartment and two side walls formed at opposite ends of the receiving compartment. The hold-down member has opposite ends that respectively form pivot structures for pivotal coupling to the side walls and rotation between an open position and a holding position. The hold-down member is made of metal and the receiving housing is at least partly made of metal to form a conduction section, which is connected to a grounding terminal. When the hold-down member is at the open position and a circuit flat cable is inserted into the receiving compartment, the hold-down member is operated to depress and hold the circuit flat cable and the hold-down member is put in electrical connection with the grounding terminal through the conduction section.
Abstract:
Provided is a circuit board based connector with raised projection section, which is formed by applying substrate bonding and formation techniques to make a connector that features a raised projection section. The circuit substrate has an end that is provided with conductive terminals and an opposite end that is provided with flat cable connection terminals for connection with a flat cable. The circuit substrate has a first surface on which the projection section is formed. A shielding layer covers the projection section and a portion of the first surface. The circuit substrate has a second surface on which a second shielding layer is selectively formed. When the circuit substrate is inserted into an insertion space defined in a connection socket with the conductive terminals thereof, the shielding layer and the projection section of the circuit substrate are put into engagement with and thus retained by the insertion space of the connection socket to thereby fix within the connection socket.
Abstract:
A foldable signal transmission cable assembly includes parallelly extended first and second cables, which are connected at opposite first and second ends by transverse first and second connecting sections, respectively, and have first and second connectors provided at the first end of the first cable and at the second end of the first or the second cable, respectively, to electrically connect to signal lines provided on the first and second cables and the first and second connecting sections. The first and second connecting sections may be bent along folding lines provided at middle points thereof, so as to turn and locate the second cable below the first cable. The first and second cables may be formed from a single-side, a double-side, a multisided, or a multilayer substrate, and may include a cluster section.
Abstract:
A bundled flexible flat circuit cable includes a flexible substrate that forms at least one cluster section having an end forming at least one first connection section and an opposite end forming at least one second connection section. Both the first and second connection sections or one of the first and second connection sections form a stack structure. The flexible substrate can be of a structure of single-sided or double-sided substrate and may additionally include an electromagnetic shielding layer. A bundling structure is provided to bundle the cluster section at a predetermined location to form a bundled structure. The bundling structure can be made of a shielding material, an insulation material, or a combination of shielding material and insulation material.
Abstract:
A flat cable includes an enclosure sleeve that encloses a selected section of a cluster section of a flexible substrate. The enclosure sleeve has opposite ends respectively coupled to a first water resistant member and a second water resistant member. Each water resistant member includes a base forming a hollow channel and an insertion end extending from the base. The insertion end is fit to an inside or outside wall of an end of the enclosure sleeve. The first water resistant member, the second water resistant member, and the enclosure sleeve are combined together to form a water resistant section. When the flexible substrate is subjected to a stretching force in an extension direction or a torque applied in a rotation direction, the flexible substrate is allowed to undergo relative displacement with respect to the first water resistant member, the second water resistant member, and the enclosure sleeve.
Abstract:
Disclosed is a detachment and displacement protection structure for insertion of flexible circuit flat cable. An inserter positioning section is formed on a flexible circuit flat cable and coupled with an inserter, which includes a metal member and a plastic member. In assembling, the plastic member is first positioned on a first surface of the inserter positioning section of the flexible circuit flat cable, and then the metal member is fit over the plastic member. A detachment and displacement protection structure is provided on the inserter positioning section to constrain the inserter from displacing and detaching in a flat cable extension direction due to being acted upon by an external force when the inserter is positioned on the inserter positioning section.
Abstract:
Disclosed is a double-side-conducting flexible-circuit flat cable with cluster section, which includes a flexible circuit substrate, a first electrical conduction path, a second electrical conduction path, a plurality of first and second conductive contact zones. The flexible circuit substrate has a first surface and a second surface and includes, in an extension direction, a first connection section, a cluster section, and at least one second connection section. The cluster section is composed of a plurality of clustered flat cable components formed by slitting in the extension direction. The first and second electrical conduction paths are respectively formed on the first and second surfaces of the flexible circuit substrate and each extends along one of the clustered flat cable components of the cluster section. The plurality of first and second conductive contact zones are respectively arranged on the first and second surfaces of the flexible circuit substrate at the first connection section. Each of the first and second conductive contact zones extends along one of the electrical conduction paths of the cluster section toward the second connection section.
Abstract:
A flexible printed circuit board with waterproof structure includes a flexible substrate that has a first surface having a first metal layer bonded thereon. The first metal layer forms a covered area and at least one mounting zone. A bonding strength enhancing structure is formed on the mounting zone. A first insulation layer is formed on the covered area of the upper surface of the first metal layer in such a way to expose the mounting zone. A water resistant member is bonded to the bonding strength enhancing structure and a second surface of the flexible substrate.
Abstract:
Disclosed is a flexible-circuit flat cable with cluster section, including at least one cluster section, at least one slip section, a first connection section, and a second connection section. The first connection section is set at a first end of the cluster section. The slip section has a first end connected to a second end of the cluster section and a second end at which the second connection section is set. The four sections are all provided with a plurality of signal transmission lines corresponding to and connecting each other. The first connection section and the second connection section are selectively provided with a connector or a plugging end. Further, the cluster section includes a cluster structure composed of a plurality of clustered flat cable components that are formed by slitting in a direction parallel to extension direction of a flexible circuit board to impose free and independent flexibility for bending to each clustered flat cable component.