Abstract:
Provided are methods of sealing open pores of a surface of a porous dielectric material using an initiated chemical vapor deposition (iCVD) process. In one example method of sealing open pores, since the polymer thin film having a significantly thin thickness may be formed by a solvent-free vapor deposition method without plasma treatment, it is possible to minimize deterioration of characteristics of the dielectric material vulnerable to plasma and a chemical solution.
Abstract:
This disclosure relates to a method of manufacturing n-doped graphene and an electrical component using ammonium fluoride (NH4F), and to graphene and an electrical component thereby. An example method of manufacturing n-doped graphene includes (a) preparing graphene and ammonium fluoride (NH4F); and (b) exposing the graphene to the ammonium fluoride (NH4F), wherein through (b), a fluorine layer is formed on part or all of upper and lower surfaces of a graphene layer, and ammonium ions are physisorbed to part or all of the upper and lower surfaces of the graphene layer or defects between carbon atoms of the graphene layer, thereby maintaining or further improving superior electrical properties of graphene including charge mobility while performing n-doping of graphene.