Abstract:
The present subject matter provides a method of manufacturing an electrode for a fuel cell, in which nanocarbons are grown on the surface of a substrate for a fuel cell using a process of simultaneously gasifying a platinum precursor and a carbon precursor, and simultaneously core-shell-structured platinum-carbon composite catalyst particles are highly dispersed between nanocarbons The subject matter also provides an electrode for a fuel cell, manufactured by the method. This method is advantageous in that an electrode for a fuel cell having remarkably improved electrochemical performance and durability can be manufactured by a simple process.
Abstract:
A method of preparing a metal-carbon composite of a core-shell structure through simultaneous vaporization, in which a metal particle constitutes a core and carbon constitutes a shell, with the metal-carbon composite prepared in the form of powder and supported on a supporter, and a metal-carbon composite of a core-shell structure prepared by the same. In these methods, the metal-carbon composite of the core-shell structure is prepared through simultaneous vaporization of metal and carbon precursors and does not require separate post-processing. Further, in the metal-carbon composite of the core-shell structure prepared by these methods, a carbon shell covers a portion or the entirety of a surface of a metal core, whereby the metal particles can be prevented from suffering agglomeration, separation or corrosion when subjected to harsh process conditions at high temperatures for long durations under strong acid and alkali conditions, thereby providing high performance and high durability.