Abstract:
A structure for protecting and guiding a flat cable connected between a traveling module and a protective cover of a scanner is disclosed. The protective structure includes an anti-bending member mounted onto the traveling module for preventing the flat cable from being over-bent at its first end. A guide channel member is disposed on the protective cover under the flat cable and along the moving direction of the traveling module for guiding the flat cable during moving of the traveling module and preventing the flat cable from being swung left and right. The second end of the flat cable is extended into the protective cover via a protective sheath fitted on the cover for preventing the second end of the flat cable from excess bending angle and keep the flat cable smoothly moving without deflection.
Abstract:
A structure for protecting and guiding a flat cable connected between a traveling module and a protective cover of a scanner is disclosed. The protective structure includes an anti-bending member mounted onto the traveling module for preventing the flat cable from being over-bent at its first end. A guide channel member is disposed on the protective cover under the flat cable and along the moving direction of the traveling module for guiding the flat cable during moving of the traveling module and preventing the flat cable from being swung left and right. The second end of the flat cable is extended into the protective cover via a protective sheath fitted on the cover for preventing the second end of the flat cable from excess bending angle and keep the flat cable smoothly moving without deflection.
Abstract:
An optical scanner suitable for scanning a vertical object. The optical scanner has a scanning body, a focusing device and a scanning module. The scanning body has a transparent window, the focusing device has an arm, a reflective mirror and a lens. One end of the arm is coupled to the scanning body, and the reflecting mirror and the lens are disposed on the arm. The scanning module is disposed in the scanning body with a shell, a lens and an optical sensor. The shell has a light cone opening, and the lens and optical sensor are disposed within the shell. The image of the vertical object is focused by the focusing device on the transparent window, incident to the scanning module via the light cone opening, and refracted by the lens to form an image on the optical sensor.
Abstract:
A paper-separating plate is adapted for a paper-separating mechanism having a paper-separating roller. The paper-separating plate placed around a side of the paper-separating roller comprises a main body and a cushion. The main body has a surface and a plurality of grooves and the grooves are positioned on the surface. The cushion is positioned on the surface of the main body and covers the grooves. The cushion positioned over the partial grooves is elastically pressed onto the paper-separating roller. The grooves are linear and the direction of extending the linear grooves is substantially parallel with the axis of the paper-separating roller, the linear grooves neighboring one another or each other. Besides, the cushion is made of flexible material and the main body is made of rigid material.
Abstract:
A lamp module comprising a lamp holder and a lamp is provided. The lamp holder has a structure with a curved arc surface such that the ends of the structure are inwardly converging. Light from the lamp impinging upon the curved arc surface is scattered out to a linear dimension greater than the original length of the lamp. The scattered light is projected onto the light-inlet surface of a light-guiding plate so that light emerges from the light-emitting surface as a planar light source.
Abstract:
A latch-free button structure and its design method that can be applied to most electronic devices. The button includes a body, a wing plate, a positioning plate and a contact rod. The top end of the wing plate joins with the side edges of the button body and the positioning plate joins with the lower end of the wing plate. The contact rod is attached to the bottom section of the button body. If the height from the bottom of the contact rod to the contact point on the circuit board is B; the height from the bottom section of the button body to the surface of the housing is C; the height of the wing plate is A; the height of the sidewall of the button cover close to the button body is D and the height from the uppermost section of the button body to the top end of the wing plate is E, the value of A, B, C, D and E must follow the inequality relationships E−B>D, E−D>A, and D>A÷C≧B.
Abstract:
An optical scanner suitable for scanning a vertical object. The optical scanner has a scanning body, a focusing device and a scanning module. The scanning body has a transparent window, the focusing device has an arm, a reflective mirror and a lens. One end of the arm is coupled to the scanning body, and the reflecting mirror and the lens are disposed on the arm. The scanning module is disposed in the scanning body with a shell, a lens and an optical sensor. The shell has a light cone opening, and the lens and optical sensor are disposed within the shell. The image of the vertical object is focused by the focusing device on the transparent window, incident to the scanning module via the light cone opening, and refracted by the lens to form an image on the optical sensor.
Abstract:
A supporting structure for a platform in a scanner is provided. The scanner has a housing and the supporting structure is located on an interior wall of the housing. The supporting structure includes a buffering component that includes a supporting surface and a stress absorbing body. The stress absorbing body is located beneath the supporting surface to share an external stress received by the supporting surface when the platform is subject to an external force.
Abstract:
An optical scanner is provided with a carrier, a casing, a driving unit and a transmission unit. The carrier has a connecting unit and an optical system mounted thereon. The casing has a guiding rail formed as integral unit on the interior wall. The guiding rail has at least a fastener for latching onto the connecting unit of the carrier. The transmission unit links up the driving unit and the carrier. The driving unit drives the transmission unit and then the transmission unit pulls the carrier along the guiding rail through the linkage between the connecting unit and the fastener.
Abstract:
A linear guiding mechanism for a platform type optical scanner. A V-shaped track is installed inside a casing and positioned parallel to the travel path of a carrier chassis containing a system of optical devices. The upper section of the V-shaped track has a pair of support surfaces forming an included angle. The V-shaped track supports a positioning wheel or a positioning bump attached to the carrier chassis. The carrier chassis moves along the longitudinal direction of the V-shaped track when driven by a driving system. The V-shaped track may be constructed from a pair of monorails so that the driving belt may move inside the space between the monorails. An additional positioning structure may attach to the interior sidewall of the casing to serve as a retainer for the chassis in an initial position.