Abstract:
The present invention provides for a Time Division Duplex-Radio Local Area Network (TDD-RLAN) which includes a Radio Access Network Internet Protocol (RAN IP) gateway that enables connectivity to the public Internet. The system may serve as a stand-alone system or be incorporated into a UMTS used with conventional Core Network, particularly for tracking and implementing AAA functions in the Core Network.
Abstract:
A wireless spread spectrum base station has a plurality of modems. The modems produce at least one baseband channel signal and a baseband reference signal. At least one forward power controller controls a power level of the at least one baseband channel signal. A baseband signal combiner combines the at least one baseband channel and baseband reference signals. A radio frequency transmitter modulates to radio frequency and transmits the combined signal. A reference power control processor determines a desired transmit power level of the baseband reference signal to the desired transmit power level.
Abstract:
An apparatus for controlling transmission power during the establishment of a channel in a CDMA communication system utilizes the transmission of a short code from a subscriber unit to a base station during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional spreading code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The subscriber unit quickly increases transmission power while repeatedly transmitting the short code until the signal is detected by the base station. Once the base station detects the short code, it sends an indication to the subscriber unit to cease increasing transmission power. The use of short codes limits power overshoot and interference to other subscriber units and permits the base station to quickly synchronize to the spreading code used by the subscriber unit.
Abstract:
A subscriber unit for controlling transmission power during the establishment of a communication channel utilizes the transmission of a short code during initial power ramp-up. The short code is a sequence which has a much shorter period than a conventional access code. The ramp-up starts from an initial power level which is quickly increased, while repeatedly transmitting the short code until a detection signal is received by the base station. The use of short codes limits power overshoot and interference.
Abstract:
A wireless spread spectrum base station has a plurality of modems. The modems produce at least one baseband channel signal and a baseband global signal. At least one forward power controller controls a power level of the at least one baseband channel signal. A baseband signal combiner combines the at least one baseband channel and baseband global signals. A radio frequency transmitter modulates to radio frequency and transmits the combined signal. A global power control processor determines a desired transmit power level of the baseband global signal to the desired transmit power level.
Abstract:
A method is disclosed for receiving a transmitted signal in a communication system employing CDMA techniques wherein the transmitted signal includes a plurality of short codes, each of which is transmitted repetitively over a fixed period of time and where the received signal has CW interference in addition to the transmitted signal. The method includes detecting the presence of the short code in a plurality of time phases of the received signal by calculating a likelihood ratio for each phase. The likelihood ratio takes into account the current short code.
Abstract:
A method of controlling transmission power during the establishment of a channel in a CDMA communication system utilizes the transmission of a short code from a subscriber unit to a base station during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional spreading code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The subscriber unit quickly increases transmission power while repeatedly transmitting the short code until the signal is detected by the base station. Once the base station detects the short code, it sends an indication to the subscriber unit to cease increasing transmission power. The use of short codes limits power overshoot and interference to other subscriber units and permits the base station to quickly synchronize to the spreading code used by the subscriber unit.
Abstract:
An improved base station which cancels the effects of known fixed interference sources produces a signal substantially free from the interference sources thereby increasing total channel capacity. The adaptive interference canceler system includes a main antenna for receiving signals from other communication stations and at least one directional antenna directed toward an interference source. The main and directional antennas are coupled together such that an output signal substantially free from the interference is generated.
Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
A circuit or software generates a cipher stream. The software models components or the circuit comprises a first and a second plurality of linear feedback shift registers (LFSR). A first of the second plurality of LFSR has a clock signal as a clock input and others of the first plurality of LFSR have an output of another of the first plurality of LFSR as a clock input. A first of the first plurality of LFSR has the clock signal combined with an output of the first of the second plurality of LFSR as a clock input and others of the second plurality of LFSR have an output of one of the first plurality of LSFR combined with an output of another of the first plurality of LFSR as a clock input. An output of a last of the first plurality of LFSR and an output of a last of the second plurality of LFSR is combined to produce the cipher stream