Abstract:
A bandwidth adjustment method includes: determining a bandwidth update value of a channel of a first network system and a bandwidth update value of a channel of a second network system and a bandwidth update value of a protective bandwidth according to a request of a user or a channel condition, so that updated bandwidths of the channels of the first network system and the second network system meet the request of the user or are adapted to requirements of channel conditions. By using the technical schemes, a network resource can be adjusted between multiple network systems when the multiple network systems share one network resource, thereby helping improve the application efficiency of a bandwidth resource and ensuring anti-interference capabilities of the network systems.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for retrieving transmission opportunity control in reverse direction grant. The method includes: obtaining, by a reverse direction responder (RD responder), a TXOP control from a reverse direction initiator (RD initiator); enabling, by the RD responder, a multi-user multiple-input multiple-output (MU-MIMO) mode; sending, by the RD responder, a frame to a plurality of stations concurrently in a TXOP period, the plurality of stations comprise the RD initiator; wherein the frame carries information that only requires the RD initiator to send back only a single acknowledgement in the TXOP period to return the TXOP control.
Abstract:
Embodiments of the present invention provide a method for establishing an association between a STA and an AP, and the method includes: sending, by the STA, an association request frame to the AP, where the association request frame includes a service type element, and the service type element is used for indicating a sensor service type, an offloading service type, or a hybrid service type to which the STA belongs, where the sensor service type includes a first sensor service or a second sensor service, and the offloading service type includes a first offloading service or a second offloading service; and receiving, by the STA, an association response frame sent by the AP, where the association response frame is generated by the AP after determining, according to the service type element, a service type to which the STA belongs.
Abstract:
A scheduling method, including: listening to, by a station, a first beacon frame containing a DTIM message used for indicating a beacon interval allocated for each group of stations within a current scheduling period; determining the beacon interval allocated for the station within the current scheduling period according to the DTIM message contained in the first beacon frame; listening to, by the station, within the beacon interval allocated for the station, a second beacon frame containing scheduling information of the current beacon interval used for indicating a time period allocated to each group of stations for data transmission within the current beacon interval; when data transmission is required, transmitting, by the station, data within the time period allocated to the group of the station according to indication of the scheduling information. The present invention improves utilization of time periods, saves time resources and enhances transmission efficiency.
Abstract:
The present invention discloses a method, device, and system for transmitting channel information, pertaining to the field of radio communication. The method for obtaining channel information includes: transmitting, by a beamformer, a request for obtaining channel information to a beamformee within the duration of a current first TXOP; receiving a null feedback frame transmitted by the beamformee within the duration of the current first TXOP; within the validity period of the channel information, if the beamformer obtains a second TXOP, transmitting, within the second TXOP, a channel information indication frame to request the channel information, and receiving the channel information transmitted by the beamformee. The system includes a beamformer and a beamformee. The present invention saves the signaling resources of the beamformer and reduces the power consumption of the beamformee.
Abstract:
Disclosed is a data transmission method. The method comprises: reserving a first channel and a second channel, where the first channel is used for transmitting data and the second channel is used for transmitting ACKs; sending data to a receiving end on the first channel that is reserved; receiving an ACK that is sent by the receiving end and corresponds to the data on the second channel that is reserved and determining whether the data needs to be cached based on information carried in the ACK; and if the information carried in the ACK indicates that the receiving end has correctly received the data, clearing the data that is cached by a sending end. Through separate transmission of the data and the ACK, an efficiency problem of the sending end in providing MAC in a wireless system in a condition of a limited cache capacity is resolved.
Abstract:
A channel competition method, includes: a first device detecting whether a target channel contains an idle sub-channel which is in an idle state or not, and if so, sending a request frame to a second device over a target sub-channel, wherein the target sub-channel is at least one sub-channel which is contained in the idle sub-channel; and when the first device receives a response frame sent by the second device, the first device determining that the competition for the target sub-channel is successful, wherein the response frame is a response frame issued by the second device to the request frame. Correspondingly, further provided is a corresponding device. The embodiments of the present application can improve the spectrum efficiency of a network system.
Abstract:
The present invention discloses a method, device, and system for transmitting channel information, pertaining to the field of radio communication. The method for obtaining channel information includes: transmitting, by a beamformer, a request for obtaining channel information to a beamformee within the duration of a current first TXOP; receiving a null feedback frame transmitted by the beamformee within the duration of the current first TXOP; within the validity period of the channel information, if the beamformer obtains a second TXOP, transmitting, within the second TXOP, a channel information indication frame to request the channel information, and receiving the channel information transmitted by the beamformee. The system includes a beamformer and a beamformee. The present invention saves the signaling resources of the beamformer and reduces the power consumption of the beamformee.
Abstract:
Embodiments of the present invention disclose a method and an apparatus for retrieving transmit opportunity control in reverse direction grant, so that a conflict occurring between a case where an RD Initiator continues sending another frame to an RD Responder after retrieving TXOP control and a case where a terminal other than the RD Initiator sends a block acknowledgement to the RD Responder can be avoided. The method provided in the embodiments of the present invention includes: when an RD Initiator fails to correctly demodulate a frame sent by an RD Responder, retrieving, by the RD Initiator, TXOP control by using a PIFS if it is impossible for the RD Responder to enable an MU-MIMO mode, and retrieving, by the RD Initiator, the TXOP control by using a duration if it is possible for the RD Responder to enable the MU-MIMO mode, where the duration is longer than the PIFS.
Abstract:
Disclosed is a data transmission method. The method comprises: reserving a first channel and a second channel, where the first channel is used for transmitting data and the second channel is used for transmitting ACKs; sending data to a receiving end on the first channel that is reserved; receiving an ACK that is sent by the receiving end and corresponds to the data on the second channel that is reserved and determining whether the data needs to be cached based on information carried in the ACK; and if the information carried in the ACK indicates that the receiving end has correctly received the data, clearing the data that is cached by a sending end. Through separate transmission of the data and the ACK, an efficiency problem of the sending end in providing MAC in a wireless system in a condition of a limited cache capacity is resolved.