Abstract:
Embodiments of the present disclosure provide an array antenna and a beam alignment method for an array antenna. The array antenna includes a first subarray, a second subarray, a first power detector, a second power detector, and a decision device, where the first power detector is connected to the first subarray, the second power detector is connected to the second subarray, the decision device is connected to the first power detector, the decision device is connected to the second power detector, and the decision device is configured to determine a first alignment direction of the array antenna according to a power of an output signal of the first subarray and a power of an output signal of the second subarray.
Abstract:
A delay estimation method for a multiple input multiple output communications system, includes: calculating, by a receiver, a channel response matrix of a Multiple input multiple output MIMO communications system, where there are n transmit channels and m receive channels in the MIMO communications system, n≥2, m≥2, and the channel response matrix includes channel responses of n*m sub-channels; calculating, by the receiver, an integer delay, relative to a reference sub-channel, of each of the n*m sub-channels according to the channel response matrix, where the reference sub-channel is any sub-channel in the n*m sub-channels; calculating, by the receiver, fraction delays of the n*m sub-channels according to the channel response matrix; and separating out, by the receiver, delays of the m receive channels according to delays of the n*m sub-channels.
Abstract:
The embodiments of the present invention provide an array antenna beam adjustment device; before combining and analog-digital conversion, the array antenna beam adjustment device couples an N-way reception signal, and performs low-speed small-bandwidth analog-digital conversion on the N-way reception signal; according to the analog-digital converted signal, spatial filtering is performed and a filtering coefficient is adjusted; according to the filtering coefficient, the weight of the reception signal is adjusted, and thus the reception beam is adjusted. In the embodiments of the present invention, beam control is carried out according to the N-way reception signal, and the speed and flexibility of the beam control are greatly improved.
Abstract:
Embodiments of the present invention provide a apparatus. The apparatus includes: N timing phase adjusters, a level calculator, and a first selector, where N is an integer greater than or equal to 2; the timing phase adjuster is configured to perform phase adjustment on a first signal according to a phase adjustment value, to obtain an adjusted first signal, where the first signal is a baseband signal, and the N timing phase adjusters respectively correspond to different phase adjustment values; the level calculator is configured to acquire level fluctuation values, within a preset time, of N adjusted first signals, determine an identifier of an adjusted first signal corresponding to a minimum level fluctuation value, and send the identifier to the first selector; and the first selector is configured to output the adjusted first signal corresponding to the identifier.