Abstract:
A method, a network device, and a system for synchronization between network devices are provided. The method includes: establishing, by a first network device, an inband synchronization channel to a second network device in a MPLS-TP network, where the inband synchronization channel is a channel on a data plane, and the first network device and the second network device are included in a same backup group; sending, a first synchronization packet to the second network device through the inband synchronization channel, where the first synchronization packet carries synchronization information of the first network device, and the synchronization information of the first network device includes configuration information or status information of the first network device. The present disclosure can implement synchronization between network devices on an MPLS-TP network that does not have a control plane.
Abstract:
A packet processing method and a network device in a hybrid access network. The method comprises sending, by a first network device, a first data packet in a first sending window to a second network device by using a first tunnel. In response to receiving a first acknowledgement response sent by the second network device, increasing, by the first network device, a size of the first sending window based on a first proportion. In response to not receiving, within a first predetermined time, the first acknowledgement response, decreasing the size of the first sending window based on a second proportion; and in response to determining that the size of the first sending window is greater than or equal to a first threshold, sending a second data packet to a second receiving window of the second network device by using a second sending window.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
The present invention provides a method, a device, and a system for determining a GRE tunnel identifier, applied to a scenario in which there are at least two bonded GRE tunnels between a HAG and HCPE. The method is implemented by the HAG and includes: receiving a service packet that is sent by the HCPE through a first GRE tunnel, where the service packet includes a source IP address of the first GRE tunnel carrying the service packet, and the first GRE tunnel is one of the at least two GRE tunnels; and looking up a correspondence table according to the source IP address of the first GRE tunnel, to determine a tunnel identifier of the first GRE tunnel carrying the service packet, where the correspondence table includes a correspondence between the source IP address of the first GRE tunnel and the tunnel identifier of the first GRE tunnel.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
A packet processing method and a network device in a hybrid access network. The method comprises sending, by a first network device, a first data packet in a first sending window to a second network device by using a first tunnel. In response to receiving a first acknowledgement response sent by the second network device, increasing, by the first network device, a size of the first sending window based on a first proportion. In response to not receiving, within a first predetermined time, the first acknowledgement response, decreasing the size of the first sending window based on a second proportion; and in response to determining that the size of the first sending window is greater than or equal to a first threshold, sending a second data packet to a second receiving window of the second network device by using a second sending window.
Abstract:
Embodiments of the present application provide a method, device, and system for processing an OAM packet, where the method for processing an OAM packet includes: receiving, by a first network device, an operation, administration and maintenance (OAM) instruction sent by an OAM server, where the OAM instruction carries first format information and a first sending target identifier, where the first format information is used for indicating an OAM packet format; and generating, by the first network device, a first OAM packet according to the first format information, and sending the first OAM packet to a network device indicated by the first sending target identifier. The method, device, and system for processing an OAM packet provided in the embodiments of the present application achieve adaptability to different OAM standards without changing of a hardware structure of a network device, and improve OAM processing flexibility.
Abstract:
Embodiments of the present invention provide a network label allocation method, a device, and a system, which enable a local PE to distinguish packets from different remote PEs. The method includes: generating, by a local provider edge PE, a VPN label route for each remote PE, where VPN labels in VPN label routes of different remote PEs are different, and the remote PE and the local PE at least belong to a same VPN; and sending the VPN label route to the remote PE, so that the remote PE separately matches an IP address of the remote PE with a target device IP address in the VPN label route, and matches an import route target RT of each VRF of the remote PE with a route target RT in the VPN label route, a packet related to a successfully matched VRF.