Abstract:
A method in a radio resource allocator of a radio access network is disclosed. The network comprises at least one first layer and at least one second layer, the first layer is higher than the second layer; and the method in a first radio resource allocator of the first layer comprises: decides if a second radio resource allocator of the second layer in an autonomous mode or in a controlled mode for at least one portion of available radio resources; when the second radio resource allocator in the autonomous mode, allocates the at least one portion of available radio resources to the second radio resource allocator; when the second radio resource allocator in the controlled mode, allocates the at least one portion of available resources to radio resource users of the radio resource users of the second radio resource allocator and/or radio resource allocators of a third lower layer.
Abstract:
A method in a radio resource allocator of a radio access network is disclosed. The network comprises at least one first layer and at least one second layer, the first layer is higher than the second layer; and the method in a first radio resource allocator of the first layer comprises: decides if a second radio resource allocator of the second layer in an autonomous mode or in a controlled mode for at least one portion of available radio resources; when the second radio resource allocator in the autonomous mode, allocates the at least one portion of available radio resources to the second radio resource allocator; when the second radio resource allocator in the controlled mode, allocates the at least one portion of available resources to radio resource users of the radio resource users of the second radio resource allocator and/or radio resource allocators of a third lower layer.
Abstract:
Channel resource allocation is disclosed. Embodiments of channel resource allocation allocate channel resources to plural cells or cell sections according to a classification depending on distribution statistics.
Abstract:
The present disclosure relates to an access network node for a wireless communication system. The access network node is configured to act as a source access network node or as a target access network node, and comprises a transceiver configured to receive a handover instruction from a control device, the handover instruction comprising a handover time instance for a user device, a processor configured to serve the user device by maintaining a data connection with the user device until the handover time instance, and share an Automatic Repeat Request/Hybrid Automatic Repeat Request, ARQ/HARQ, process with a target access network node for the user device; or serve the user device by maintaining a data connection with the user device after the handover time instance, and share a ARQ/HARQ process with a source access network node for the user device.
Abstract:
A controller node for a wireless communication system includes a processor for operating the controller node in a configuration test context. The processor is configured to transmit at least one configuration test message including at least one configuration test setting and at least one operational setting to at least one first radio node and at least one second radio node, receive a test report indicating at least one result of at least one configuration test of the configuration test context, determine from the test report a capability of the at least one first radio node to operate as an authorized and verified radio node in the wireless communication system, and transmit the capability to the at least one first radio node that the at least one first radio node is an authorized and verified radio node.
Abstract:
The present invention relates to a user device and a network node. Furthermore, the present invention also relates to corresponding methods, a computer program, and a computer program product. A Radio Network Temporary Identifier (RNTI) is assigned to a User Device from a radio communication network, wherein the assigned RNTI is valid for a plurality of network nodes of the radio communication network and associated with a common data channel of the radio communication network.
Abstract:
An embodiment of an apparatus for determining clusters of access nodes includes a processing apparatus configured to determine a first cluster based on a first metric, wherein the first cluster comprises one or more access nodes for serving at least a first user node, assign further user nodes to be served by the one or more access nodes of the first cluster based on a spatial separation of the further user nodes and a second metric, and determine at least a further cluster by repeating the determining and assigning steps for further access nodes and user nodes.
Abstract:
A first network node and a second network node are disclosed. The first network node comprises a processor and a transceiver. The transceiver is configured to receive a first signal S1 comprising a network information message indicating network information associated with a first network operator in a region. The processor is configured to determine an allocation of frequency resources for operation W1, for the first network operator or a second network operator in the region, based on the network information, and the processor is further configured to determine a density of network nodes for operation λb or a frequency spectrum access price, for the first network operator or the second network operator, based on the network information. Corresponding methods, a computer program, and a computer program product are also disclosed.
Abstract:
An apparatus for assigning a plurality of access nodes of a wireless communication network to control areas includes a processing apparatus. The processing apparatus is configured to assign each access node in the plurality of access nodes to a control area of a plurality of control areas and to determine a first control phase. The first control phase is a period of time during which the assignment of access nodes to control areas remains constant. The processing apparatus is configured to, when changing from the first control phase to a following second control phase, reassign at least a subset of access nodes which were assigned during the first control phase to a first control area to a second control area and reassign at least a subset of access nodes which were assigned during the first control phase to a third control area to the first control area.
Abstract:
The present disclosure relates to a user device and a network node. The user device comprises a transceiver configured to broadcast an access signal SA when not being connected to any radio communication networks, receive an access response signal SR in response to broadcasting the access signal SA, communicate with at least one network node of the radio communication network. The network node comprises a transceiver and a processor; wherein the transceiver is configured to receive a broadcasted access signal SA, wherein the broadcasted access signal SA comprises identity information of the user device; wherein the processor is configured to assign at least one frequency spectrum segment for communication for the user device; and wherein the transceiver is further configured to transmit an access response signal SR to the user device.