Abstract:
The invention provides a toner for electrostatic image development, containing a toner particle and external additive particles adhered to the surface of the toner particle, each of the external additive particles being constituted of plural irreversibly coalesced primary particles.
Abstract:
An illuminated position adjusting method used in optical scanning apparatus, suppressing deterioration of imaging spot shape on scanning surface, and preventing undesirable light from arriving at the scanning surface, to form high-quality image. The optical scanning apparatus includes: a common deflector for deflecting beams emitted from light source units; and imaging optical units each including at least one imaging optical element and at least one reflector which are disposed in optical path of beam deflected by the common deflector, and image the beam on scanning surface. In an optical path in which the largest number of the reflectors are disposed among the optical paths guided to the scanning surfaces, the reflector which is disposed optically closest to the scanning surface is rotated in sub-scanning direction, to adjust the illuminated position of the beam, which illuminates the scanning surface, on the scanning surface in sub-scanning direction.
Abstract:
An optical scanning device includes two scanning units which are disposed opposed to each other with a scanning deflector arranged therebetween, wherein one scanning unit has first and second imaging optical elements while the other scanning unit has third and fourth imaging optical elements, wherein the one scanning unit includes a light blocking member for intercepting unwanted light reflected at an optical surface of the fourth imaging optical element, wherein the third imaging optical element is provided at a light path between the fourth imaging optical element and the first light blocking member, and wherein the third imaging optical element has a positive refracting power in the sub-scan section through which unwanted light reflected at the optical surface of the fourth imaging optical element passes.
Abstract:
An illuminated position adjusting method used in optical scanning apparatus, suppressing deterioration of imaging spot shape on scanning surface, and preventing undesirable light from arriving at the scanning surface, to form high-quality image. The optical scanning apparatus includes: a common deflector for deflecting beams emitted from light source units; and imaging optical units each including at least one imaging optical element and at least one reflector which are disposed in optical path of beam deflected by the common deflector, and image the beam on scanning surface. In an optical path in which the largest number of the reflectors are disposed among the optical paths guided to the scanning surfaces, the reflector which is disposed optically closest to the scanning surface is rotated in sub-scanning direction, to adjust the illuminated position of the beam, which illuminates the scanning surface, on the scanning surface in sub-scanning direction.
Abstract:
A toner for use in the development of electrostatic latent images contains colored particles including at least a binder resin, a coloring agent and a releasing agent, and an external additive. An average circularity of the toner is 0.975 or more; a median of arithmetic average height distribution of the toner is 0.05 μm or more and not more than 0.12 μm; and a fluctuation of arithmetic average height is not more than 35. Preferably, a value of 90% accumulation of the arithmetic average height distribution of the toner is less than 0.15 μm; and a fluctuation of number average particle size and a fluctuation of circularity of the toner are not more than 25 and not more than 2.5, respectively. The electrostatic latent image developer contains the foregoing toner and a carrier, and the image forming method uses the foregoing toner or the foregoing developer.
Abstract:
A simulator development system is disclosed, including a data file management part to create a data file storing data concerning a plurality of types of integrated circuits, for each update and to manage the data file with a file name including a date and time when the data file is updated; and a simulator generation part to specify a latest data file from a plurality of the data files retrieved based on a type name, by referring to the date and time included in the file name in response to a selection of the type name of the integrated circuit, and to generate the simulator corresponding to the type of the integrated circuit, which type is specified by a type name.
Abstract:
To provide high flexibility in the arrangement of optical paths toward a plurality of photosensitive members and not to cause an increase in size of an image forming apparatus even when a cartridge capacity is increased, provided is an image forming apparatus including: light source units; a deflecting unit for deflecting a plurality of light beams for scanning; a plurality of photosensitive members; an imaging optical system for imaging the light beams deflected for scanning; and a plurality of toner containers, in which the toner containers are different in capacity, and an optical path length from the photosensitive member for the same color as the toner container having a large capacity to the deflecting surface of the deflecting unit is longer than an optical path length from the photosensitive member for the same color as the toner container having a small capacity to the deflecting surface of the deflecting unit.
Abstract:
An optical scanning device includes an input optical system having an input optical element, for projecting a light beam from a light source device onto a deflecting surface of an optical deflector, and an imaging optical system having an imaging optical element, for imaging the light beam scanningly deflected by the deflecting surface of the optical deflector, on a surface to be scanned, wherein the light beam is obliquely incident on the deflecting surface in a sub-scan section, wherein the imaging optical element has at least one optical surface which is decentered in the sub-scan section, wherein the input optical element has at least one optical surface having an asymmetric and aspherical surface shape, wherein the input optical element has a thickness dm1 in the sub-scan section and at a position where a first marginal light ray of the light beam passing through the input optical system, which first marginal light ray is closer to an optical reference axis than the principal ray of that light beam is, passes, as well as a thickness dm2 at a position where a second marginal light ray further remote from the optical reference axis than the principal light ray of the light beam is, passes, and wherein dm1
Abstract:
An optical scanning device includes two scanning units each having an input optical system for making, in a sub-scan section, a light beam from a light source be incident at a finite angle on a deflecting surface of a deflector, and an imaging optical system for imaging, on a scan surface, the light beam scanningly deflected by the deflecting surface, the two scanning units being disposed opposed to each other with the deflecting means intervening therebetween, wherein one scanning unit has a first imaging optical element and a second imaging optical element while the other scanning unit has a third imaging optical element and a fourth imaging optical element, wherein the one scanning unit includes a light blocking member for intercepting unwanted light reflected at an optical surface of the fourth imaging optical element, wherein the third imaging optical element is provided at a light path between the fourth imaging optical element and the first light blocking member, and wherein the third imaging optical element has a positive refracting power in the sub-scan section through which unwanted light reflected at the optical surface of the fourth imaging optical element passes.
Abstract:
A rubber composition comprising 100 parts by weight of a rubber ingredient comprising natural rubber and/or a synthetic rubber, 0.1 to 50 parts by weight of at least one nitrogenous compound selected among benzimidazole derivatives having a specific structure and hydrazide derivatives having a specific structure, and 0.1 to 50 parts by weight of a protonic acid; and a pneumatic tire including a member formed from this rubber composition. The rubber composition enables excellent gripping performance while attaining intact productivity. The pneumatic tire produced from this rubber composition, in particular, the tire whose tread has been formed from the composition, has significantly improved gripping performance in high-speed driving, etc.