Abstract:
An intraluminal grafting system includes a hollow graft which has a proximal staple positioned proximate its proximal end and a distal staple adapted proximate its distal end. The system includes a capsule for transporting the graft through the lumen and for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. A tube is connected to the capsule and extends to exterior the vessel for manipulation by the user. A catheter is positioned within the tube to extend from the cavity and through the graft to exterior the body. The catheter has an inflatable membrane or balloon proximate the distal end thereof which is in communication via a channel with inflation and deflation means located exterior the vessel. With the inflatable membrane deflated, the capsule is positioned in the lumen and manipulated to a desired location. The inflatable mabrane is manipulated by the rod away from the graft. The force exerted by the inflatable membrane and the structure of the staples urges the staples in the vessel wall, retaining the graft in position. The remainder of the intraluminal grafting system is then removed from the corporeal vessel.
Abstract:
An intraluminal grafting system includes a hollow graft which has a proximal staple positioned proximate its proximal end and a distal staple adapted proximate its distal end. The system includes a capsule for transporting the graft through the lumen and for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. A tube is connected to the capsule and extends to exterior the vessel for manipulation by the user. A catheter is positioned within the tube to extend from the cavity and through the graft to exterior the body. The catheter has an inflatable membrane or balloon proximate the distal end thereof which is in communication via a channel with inflation and deflation means located exterior the vessel. With the inflatable membrane deflated, the capsule is positioned in the lumen and manipulated to a desired location. The inflatable membrane is manipulated by the rod away from the graft. The force exerted by the inflatable membrane and the structure of the staples urges the staples in the vessel wall, retaining the graft in position. The remainder of the intraluminal grafting system is then removed from the corporeal vessel.
Abstract:
Structure for facilitating the insertion and placement of medical apparatus into the body of a patient is disclosed which comprises a guide wire having a lumen sized to adapt about the elongated structure of needle-like means. In use, the distal end of the guide wire is placed about the needle-like means and the tip of the needle-like means is inserted through the tissue of the patient. Once inserted, the needle-like means is disassociated from the guide wire and the guide wire is advanced into the patient's body. The guide wire may have enlargement means associated therewith for enlarging or dilating the opening formed in the tissue of the patient by insertion of the needle-like means. A kit including the needle-like means and guide wire is also disclosed.
Abstract:
A guide wire for insertion into a patient has a tapered distal end and is positioned around the exterior of a trocar for positioning within a patient. The wire has a separation section and two portions. A kit includes the wire and a cannula for emplacement in a patient.
Abstract:
An intraluminal grafting system includes a hollow graft which has a plurality of staples adapted proximate its proximal end. The system includes a guide for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. The back of the guide has a cavity into which the proximal end of the graft is retained. A rod extends from the cavity to exterior the lumen for manipulation by the user. A tube is positioned over the rod to extend from the cavity and through the graft to exterior the lumen. The tube has an inflatable membrane proximate the cavity end thereof which is in communication via a channel with inflation and deflation means located exterior the lumen. With the inflatable membrane deflated, the guide means is positioned into the lumen and manipulated to a desired location. The inflatable membrane is inflated to place a force against the staples as the guide is manipulated by the rod away from the graft. The force exerted by the inflatable membrane forces the staples into the lumen.
Abstract:
Described is a prosthesis for implantation beneath the skin of a subject, the prosthesis comprising a support structure of super elastic material (e.g., nitinol), wherein the support structure is sized and shaped for augmenting, replacing, or reconstructing tissue of the subject, such as the breast. In certain embodiments, the prosthesis further includes an elastomeric outer shell having a cavity therein, the outer shell being sized and shaped for augmenting or replacing, for example, breast tissue of the subject; wherein the support structure is disposed within the cavity of the elastomeric shell.
Abstract:
A body cavity drainage device placement tool for placing a body cavity drainage tube at least partially within a body cavity of a patient. The body cavity drainage device includes a shaft, a handle attached to or integral with a proximal end of the shaft, and a distal end of the shaft sized and configured for insertion through a lateral opening of the body cavity drainage tube and at least partially through a central lumen of the body cavity drainage tube to proximate a distal end of the body cavity drainage tube. Methods relate to using a body cavity drainage device placement tool.
Abstract:
An intraluminal grafting system includes a hollow graft which has a proximal staple positioned proximate its proximal end and a distal staple adapted proximate its distal end. The system includes a capsule for transporting the graft through the lumen and for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. A tube is connected to the capsule and extends to exterior the vessel for manipulation by the user. A catheter is positioned within the tube to extend from the cavity and through the graft to exterior the body. The catheter has an inflatable membrane or balloon proximate the distal end thereof which is in communication via a channel with inflation and deflation means located exterior the vessel. With the inflatable membrane deflated, the capsule is positioned in the lumen and manipulated to a desired location. The inflatable membrane is manipulated by the rod away from the graft. The force exerted by the inflatable membrane and the structure of the staples urges the staples in the vessel wall, retaining the graft in position. The remainder of the intraluminal grafting system is then removed from the corporeal vessel.
Abstract:
An intraluminal vascular graft structure is disclosed which is structured to be deployable within a vessel without use of hooks or barbs. The intraluminal vascular graft structure comprises a tubular body formed of a biocompatible material and a frame structure, having both circumferential support and longitudinal support structures, which support the graft at a distal end thereof and upwardly from the distal end. The vascular graft may also include attachment means which initiate an inflammatory response with the inner wall of the vessel to promote attachment of the device to the vessel wall. The intraluminal vascular graft may include one or more leg portions suitable for repairing bifurcated vessels which, in conjunction with the circumferential and longitudinal support structures, assure positioning and support of the vascular graft within the vessel and against the crotch of the bifurcation. Also disclosed is a method of deployment of the vascular graft within the vessel.
Abstract:
An intraluminal vascular graft is structure to be deployable within a vessel for incorporation therein without use of hooks or barbs. The intraluminal vascular graft structure comprises a tubular body formed of a biocompatible material and a frame structure, having both circumferential support and longitudinal support structures, which support the graft at a distal end thereof and upwardly from the distal end. The vascular graft also includes a porous collar which have sufficient porosity to promote and enhance ingrowth of tissue and other materials into the porous collar from the surrounding vessel environment, thereby facilitating incorporation of the intraluminal vascular graft into the vessel wall. The tubular body of the intraluminal vascular graft may include one or more leg portions suitable for repairing bifurcated vessels which, in conjunction with the circumferential and longitudinal support structures, and the porous collar, assure positioning and support of the vascular graft within the vessel and against the crotch of the bifurcation. The intraluminal vascular graft is designed to form a tight seal between the graft and inner vessel wall, especially at the upstream end of the graft, to prevent perigraft leakage and formation of pseudoaneurysms around the graft.