Abstract:
An apparatus including a processor configured to: detect a position of a vehicle and a plurality of positions of fixed objects located around the vehicle based on map coordinates; detect objects based on information measured using a distance measurement sensor disposed in the vehicle; detect a moving object among the detected objects; estimate a plurality of positions of the vehicle and the moving object after a fixed period of time based on a position, a speed, and a movement direction of the moving object; and calculate a degree of proximity risk for the moving object with respect to the vehicle based on a distance and a speed between the vehicle and the moving object.
Abstract:
An apparatus and method for controlling a vehicle speed based on information about forward vehicles that travel in the same lane may be acquired using Vehicle to Everything (V2X) communications in a cooperative adaptive cruise control (CACC) system. The CACC system includes a communication unit receiving vehicle information from neighboring vehicles using V2V communications; an information collection unit collecting vehicle information of the neighboring vehicles and the subject vehicle using sensors; and a control unit determining a forward vehicle and a far-forward vehicle using the sensors, selecting first and second target vehicles for being followed by the subject vehicle based on the vehicle information of the forward vehicle and the far-forward vehicle and the vehicle information of the neighboring vehicles, and controlling the driving speed of the subject vehicle based on speed information of the first and second target vehicles.
Abstract:
Autonomous diesel vehicles and control methods thereof are disclosed. An autonomous vehicle may include a peripheral information collecting unit configured to collect peripheral information necessary for autonomous travelling through an image camera and a laser scanner, a main control unit configured to control the autonomous travelling with reference to the peripheral information collected by the peripheral information collecting unit, a passenger monitoring unit configured to check whether a passenger exists inside the vehicle through a sensor and transmit a result of the check to the main control unit, and an engine control unit configured to control driving of an engine and injection of fuel of an injector according to a control instruction of the main control unit. When the passenger is inside the vehicle, the main control unit performs a pilot injection control, and when the passenger is not inside the vehicle, the main control unit omits the pilot injection control.
Abstract:
Disclosed herein is an apparatus for detecting an obstacle for an around view monitoring system including a processor configured to store a plurality of images captured through an imaging device, convert a view of the images, generate a plurality of view conversion images corresponding to the images, compare the view conversion images corresponding to a plurality of images captured at a different time interval, extract a plurality of overlapping areas between the view conversion images, calculate a degree of mismatch of the overlapping areas between the view conversion images, detect a mismatch area in the overlapping areas, classify the mismatch area as an obstacle area, and display a position of the obstacle through a display of a vehicle.
Abstract:
A virtual sensor network system is provided that includes a virtual sensor node that stores sensor data collected from a sensor mounted within a vehicle in time synchronization therewith and provides the stored sensor data in time synchronization therewith, in addition, a master node performs a control on the virtual sensor node and executes an algorithm used in an intelligent vehicle using the sensor data. The master node receives the sensor data stored in the virtual sensor node as the virtual sensor data in time synchronization therewith, without inputting actual sensor data from the sensor mounted within the vehicle when executing the algorithm.