Abstract:
In a ranging image sensor, each pixel includes an avalanche multiplication region, a charge distribution region, a pair of first charge transfer regions, a pair of second charge transfer regions, a well region, a photogate electrode, a pair of first transfer gate electrodes, and a pair of second transfer gate electrodes. The first multiplication region of the avalanche multiplication region is formed so as to overlap the charge distribution region and so as not to overlap the well region in the Z direction. The second multiplication region of the avalanche multiplication region is formed so as to overlap the charge distribution region and the well region in the Z direction.
Abstract:
The present embodiment relates to a distance sensor that reduces a difference in amounts of current injected into each of plural charge collection regions prepared for one photosensitive region in order to avoid saturation caused by disturbance light. A current injection circuit injecting current into each charge collection region includes a voltage generation circuit generating a control voltage for adjustment of the injected current amount, and the voltage generation circuit generates the control voltage corresponding to a large amount of charge between the charge amounts of storage nodes coupled, respectively, to the charge collection regions. Meanwhile, a cascode device is disposed between a transistor configured to adjust the amount of current according to the control voltage and the storage node, and a potential of a current output end of the transistor and a potential of the storage node are separated.
Abstract:
The present embodiment relates to a distance sensor configured to inject an equal amount of current into storage nodes coupled, respectively, to charge collection regions where charges of a photosensitive region is distributed by driving of first and second transfer electrodes and obtain a distance to an object based on difference information on charge amounts of the respective storage nodes. Saturation caused by disturbance light of each storage node is avoided by injecting the equal amount of current to each storage node, and the difference information on the charge amounts of the respective storage nodes, which is not easily affected by the current injection, is obtained by driving the first and second transfer electrodes according to the plurality of frames representing the electrode drive pattern, respectively.
Abstract:
In a ranging device, a controlling unit alternatively switches orders in time series of a first pulse-transfer-signal and a second pulse-transfer-signal per frame term and outputs the first and second pulse-transfer-signals. Furthermore, an arithmetic unit arithmetizes a distance to an object based on total quantities of charges of signal charges, in two frame term consecutive in the time series, accumulated in a first charge-accumulating region and a second charge-accumulating region in accordance with the first and second pulse-transfer-signals having an identical phase.
Abstract:
A distance image acquisition device includes a distance measurement sensor that detects a measurement light by transferring charges generated in a charge generation region in response to incidence of a measurement light reflected by a target object, to a charge accumulation region by using a transfer gate electrode. The charge generation region includes an avalanche multiplication region that causes avalanche multiplication. The control unit divides an entire distance range of a measurement target into the plurality of sections, controls the distance measurement sensor so as to perform measurements about a plurality of sections while varying a time difference between an emission timing of the measurement light by the light source and a transferring timing of the charges by the transfer gate electrode among the plurality of sections, and generates a distance image of the entire distance range based on the results of the measurements about the plurality of sections.
Abstract:
In a distance measurement device, a control unit performs a charge distribution process in which in a first period, charge generated in a charge generation region is transferred to a first charge storage region and, in a second period, the charge generated in the charge generation region is transferred to a second charge storage region. The control unit applies an electric potential to a first overflow gate electrode so that a potential energy of a region immediately below the first overflow gate electrode is lower than a potential energy of the charge generation region in the first period, and applies an electric potential to a second overflow gate electrode so that a potential energy of a region immediately below the second overflow gate electrode is lower than a potential energy of the charge generation region in the second period.
Abstract:
A ranging image sensor includes a semiconductor layer and an electrode layer. The semiconductor layer and the electrode layer form a plurality of pixels. Each of the plurality of pixels includes an avalanche multiplication region, a charge distribution region, a first charge transfer region, and a second charge transfer region in the semiconductor layer. Each of the plurality of pixels includes a photogate electrode, a first transfer gate electrode, and a second transfer gate electrode in the electrode layer. The avalanche multiplication region is continuous over the plurality of pixels or reaches a trench formed in the semiconductor layer so as to separate the plurality of pixels from each other.
Abstract:
In accordance with an irradiation position of pulsed light, a selecting unit outputs a first transfer signal to a first transfer electrodes and outputs a second transfer signal to a second transfer electrodes, to allow signal charges to flow into first and second signal charge-collecting regions of a pixel corresponding to the irradiation position, and outputs a third transfer signal to a third transfer electrodes to allow unnecessary charges to flow into an unnecessary charge-discharging regions of a pixel other than the pixel corresponding to the irradiation position. An arithmetic unit reads out signals corresponding to respective quantities of signal charges collected in the first and second signal charge-collecting regions of the pixel selected by the selecting unit, and calculates a distance to an object based on a ratio between a quantity of signal charges collected in the first signal charge-collecting regions and a quantity of signal charges collected in the second signal charge-collecting regions.