Abstract:
A wind turbine blade is provided. The wind turbine blade includes a first section and a second section adjacent the first section. At least one of the first section and the second section includes a skin segment and a network of support members disposed within the skin segment. The network of support members is configured for expansion.
Abstract:
A method of molding a composite structure having continuous fibers contained therein is disclosed. The method including the steps of compressing a first composite material in a mold; forming a cavity in the first composite material; placing a second composite material having continuous fibers contained therein in the cavity formed in the first composite material to minimize movement and distortion of the continuous fibers; compressing the first composite material such that the compression of the first composite material causes the first composite material to flow to edges of the second composite material; and allowing the first composite material to bond to the second composite material under molding temperature and pressure to form the composite structure.
Abstract:
A method for forming a composite tube includes the steps of: braiding a plurality of strips to form a workpiece tube; bending the workpiece tube to form a bend; and extending the length of the workpiece tube by continuing the braiding step.
Abstract:
A wind blade includes a self-supporting structural framework, having a span-wise member, a plurality of chord-wise members, a fabric skin, and at least one of a stiffener and a mechanical element. The plurality of chord-wise members is coupled to the span-wise member and each chord-wise member and the span-wise member maintains an aerodynamic contour of the wind blade. Further, the fabric skin is disposed over the self-supporting structural framework. The stiffener and/or the mechanical element are coupled to the self-supporting structural framework, and are operable to provide a relative movement to the self-supporting structural framework for adjusting the aerodynamic contour and provide pretension to the fabric skin.
Abstract:
A wind blade with a self-supporting structural framework, having multiple chord-wise members and one or more span-wise members is provided. Each of the multiple chord-wise members and the one or more span-wise members have an aerodynamic contour. The wind blade also comprises a fabric skin located over the self-supporting structural framework in a tensioned state to generate an aerodynamic surface, wherein the fabric skin is attached via multiple tensioning members to both the chord wise members and span wise members.
Abstract:
A method for forming a composite tube includes the steps of: braiding a plurality of strips to form a workpiece tube; bending the workpiece tube to form a bend; and extending the length of the workpiece tube by continuing the braiding step.
Abstract:
Fan blade containment system includes circular tile layer of annular ceramic tiles attached to and extending radially inwardly from a shell, radially inner and outer annular surfaces of ceramic tiles bonded to a radially inner composite layer and the shell respectively with elastomeric inner and outer adhesive layers respectively. Elastomeric adhesive layers between circumferentially adjacent overlapped or scarfed edges along circumferential edges of the ceramic tiles overlap and mate along oppositely facing surfaces of adjacent ones of the ceramic tiles. Inner and outer adhesive layers and elastomeric adhesive layer may be a double-sided adhesive foam tape. Scarfed edges may be bevels or rabbets. Shell may be made of a metal or composite material. Fan blade containment system may be bonded to and extend inwardly from fan case circumscribing fan blades of a fan. Inner composite layer and composite outer shell may be co-cured with ceramic tiles therebetween.
Abstract:
A method of molding a composite structure having continuous fibers contained therein is disclosed. The method including the steps of compressing a first composite material in a mold; forming a cavity in the first composite material; placing a second composite material having continuous fibers contained therein in the cavity formed in the first composite material to minimize movement and distortion of the continuous fibers; compressing the first composite material such that the compression of the first composite material causes the first composite material to flow to edges of the second composite material; and allowing the first composite material to bond to the second composite material under molding temperature and pressure to form the composite structure.
Abstract:
A wind turbine blade is provided. The wind turbine blade includes a first section and a second section adjacent the first section. At least one of the first section and the second section includes a skin segment and a network of support members disposed within the skin segment. The network of support members is configured for expansion.
Abstract:
A wind blade includes a self-supporting structural framework, having a span-wise member, a plurality of chord-wise members, a fabric skin, and at least one of a stiffener and a mechanical element. The plurality of chord-wise members is coupled to the span-wise member and each chord-wise member and the span-wise member maintains an aerodynamic contour of the wind blade. Further, the fabric skin is disposed over the self-supporting structural framework. The stiffener and/or the mechanical element are coupled to the self-supporting structural framework, and are operable to provide a relative movement to the self-supporting structural framework for adjusting the aerodynamic contour and provide pretension to the fabric skin.