Abstract:
A computer-implemented method for partial volume correction in Positron Emission Tomography (PET) image reconstruction includes receiving emission data related to an activity distribution, reconstructing the activity distribution from the emission data by maximizing a penalized-likelihood objective function to produce a reconstructed PET image, quantifying an activity concentration in a region of interest of the reconstructed PET image to produce an uncorrected quantitation, and correcting the uncorrected quantitation based on a pre-calculated contrast recovery coefficient value to account for a partial volume error in the uncorrected quantitation.
Abstract:
A computer-implemented method for penalized-likelihood reconstruction of a Positron Emission Tomography (PET) image includes generating a regularization function in which a smoothing parameter is modulated by one or more data-independent spatially variable modulation factors to compensate for sensitivity variations in a PET voxel dataset, and reconstructing the PET image from the PET emission dataset using the regularization function.
Abstract:
The present disclosure relates to performing an unrolled iterative reconstruction of image data. Such approaches may include use of neural networks used for one or both of data fidelity and/or image update steps, resulting in improved image quality and accelerated reconstruction for various imaging modalities including CT, PET and MR.
Abstract:
An imaging system is provided that includes at least one detector configured to acquire imaging information, a processing unit, and a display unit. The processing unit is operably coupled to the at least one detector, and is configured to reconstruct an image using the imaging information. The image is organized into voxels having non-uniform dimensions. The processing unit is configured to perform a penalized likelihood (PL) image reconstruction using the imaging information. The PL image reconstruction includes a penalty function. Performing the penalty function includes interpolating a voxel size in at least one dimension from an original size to an interpolated size before determining a penalty function, determining the penalty function using the interpolated size to provide an initial penalty, interpolating the initial penalty to the original size to provide a modified penalty, and applying the modified penalty in the PL image reconstruction.
Abstract:
A computer-implemented method for penalized-likelihood reconstruction of a Positron Emission Tomography (PET) image includes generating a regularization function in which a smoothing parameter is modulated by one or more data-independent spatially variable modulation factors to compensate for sensitivity variations in a PET voxel dataset, and reconstructing the PET image from the PET emission dataset using the regularization function.
Abstract:
Imaging system and method are presented. Emission scan (ES) and anatomical scan (AS) data corresponding to a target volume in a subject are received. One or more at least partial AS images are reconstructed using AS data. An image-space certainty (IC) map representing a confidence level (CL) for attenuation coefficients of selected voxels in AS images and a preliminary attenuation (PA) map based on AS images are generated. One or more of selected attenuation factors (AF) in projection-space are initialized based on PA map. A projection-space certainty (PC) map representing CL for the selected AF is generated based on IC map. An emission image of the target volume is initialized. The selected AF and emission image are iteratively updated based on the ES data, PC map, initial AF, and/or initial emission image. A desired emission image and/or AF values are determined based on the iteratively updated AF and/or emission image.
Abstract:
K-space data obtained from a magnetic resonance imaging scan where motion was detected is split into two parts in accordance with the timing of the motion to produce first and second sets of k-space data corresponding to different poses. Sub-images are reconstructed from the k first and second sets of k-space data, which are used as inputs to a deep neural network which transforms them into a motion-corrected image.
Abstract:
The subject matter discussed herein relates to a fast magnetic resonance imaging (MRI) method to suppress fine-line artifact in Fast-Spin-Echo (FSE) images reconstructed with a deep-learning network. The network is trained using fully sampled NEX=2 (Number of Excitations equals to 2) data. In each case, the two excitations are combined to generate fully sampled ground-truth images with no fine-line artifact, which are used for comparison with the network generated image in the loss function. However, only one of the excitations is retrospectively undersampled and inputted into the network during training. In this way, the network learns to remove both undersampling and fine-line artifacts. At inferencing, only NEX=1 undersampled data are acquired and reconstructed.
Abstract:
A magnetic resonance imaging (MRI) system includes control and analysis circuitry having programming to acquire magnetic resonance (MR) data using coil elements of the MRI system, analyze the MR data, and reconstruct the MR data into MR sub-images. The system also includes a trained neural network associated with the control and analysis circuitry to transform the MR sub-images into a prediction relating to a presence and extent of motion corruption in the MR sub-images. The programming of the control and analysis circuitry includes instructions to control operations of the MRI system based at least in part on the prediction of the trained neural network.
Abstract:
The present disclosure relates to performing an unrolled iterative reconstruction of image data. Such approaches may include use of neural networks used for one or both of data fidelity and/or image update steps, resulting in improved image quality and accelerated reconstruction for various imaging modalities including CT, PET and MR.