Abstract:
A method for determining a concentration of at least one individual gas present in a gas-mixture includes irradiating a first component by incident modulated-light-beams characterized by a determined absorption wavelength range, modulation frequencies and a modulation amplitudes to generate first transmitted-light-beams, irradiating a second component, comprising a determined concentration of the at least one individual gas, by the first incident modulated-light-beams to generate second transmitted-light-beams, generating noise signals representative of a characteristic of the first transmitted-light-beams, generating noise-free signals representative of a characteristic of the second transmitted-light-beams, selecting an optimal modulation frequency and an optimal modulation amplitude from the modulation frequencies and the modulation amplitudes based on the noise signals and the noise-free signals, and determining a concentration of the at least one individual gas in the gas-mixture based on the optimal modulation frequency and the optimal modulation amplitude of the determined absorption wavelength range.
Abstract:
A method for determining a concentration of at least one individual gas present in a gas-mixture includes irradiating a first component by incident modulated-light-beams characterized by a determined absorption wavelength range, modulation frequencies and a modulation amplitudes to generate first transmitted-light-beams, irradiating a second component, comprising a determined concentration of the at least one individual gas, by the first incident modulated-light-beams to generate second transmitted-light-beams, generating noise signals representative of a characteristic of the first transmitted-light-beams, generating noise-free signals representative of a characteristic of the second transmitted-light-beams, selecting an optimal modulation frequency and an optimal modulation amplitude from the modulation frequencies and the modulation amplitudes based on the noise signals and the noise-free signals, and determining a concentration of the at least one individual gas in the gas-mixture based on the optimal modulation frequency and the optimal modulation amplitude of the determined absorption wavelength range.
Abstract:
A system and a method for detecting of components in a sample fluid includes a first chamber having a sample fluid and a second chamber coupled to the first chamber, wherein the second chamber has a reference fluid. The system includes a modulated light source for emitting a modulated light beam to the sample fluid and the reference fluid, to generate a first acoustic signal in the first chamber and a second acoustic signal in the second chamber. The system further includes a pressure sensor disposed between the first chamber and the second chamber, for detecting a difference between the first acoustic signal and the second acoustic signal. The system includes a processor based module communicatively coupled to the pressure sensor and configured to receive a signal representative of the difference and determine at least one of a component and the concentration of the component in the sample fluid.
Abstract:
A microfluidic device (100) is disclosed for in-process monitoring of cell culture conditions including for example one or more of: cell density; cell viability; secreted proteins; protein analysis; epitope markers; concentrations of metabolites or nutrients and antigenic determinations; the device comprising: a cell inlet path (120); plural fluid reservoirs (130) in fluid communication with the cell input path, a cell analysis area (160) in fluid communication with the path and reservoirs, and a waste storage volume (166) also in fluid communication with the cell analysis area, the device being operable to cause a primary fluid flow along the inlet path to the analysis area, and to selectively cause secondary fluid flow(s) into the path from none, one or more of the selected reservoirs to combine, if one or more of the reservoirs are selected, with the primary fluid flow from the cell inlet path, in each case for analysis at the cell analysis area, the device being further operable to cause a fluid flow of the primary and any combined secondary flows from the cell analysis area into the waste storage volume.
Abstract:
A system is presented. The system includes an absorption cell filled-with a gas-mixture, a mirror-cum-window comprising a first portion that acts as a first mirror and a second portion that acts as a first window, a second mirror, a plurality of radiation sources to generate a plurality of light beams directed into the absorption cell through the first window followed by reflection of the plurality of light beams between the first mirror and the second mirror to irradiate the gas-mixture resulting in generation of a plurality of transmitted light beams passing out of the absorption cell through the second window, a detector that detects at least one characteristic of the plurality of transmitted light beams resulting in generation of one or more response signals, and a processing subsystem that analyzes the gas-mixture at least based on the one or more response signals.
Abstract:
A system, comprising at least one source for irradiating electromagnetic radiation into a sample fluid and a reference fluid resulting in a change in a temperature of the sample fluid and a change in a temperature of the reference fluid, and a processing subsystem that monitors and determines a concentration of a gas of interest dissolved in the sample fluid based upon a difference between the change in the temperature of the sample fluid and the change in the temperature of the reference fluid, wherein the reference fluid does not contain the gas of interest, and the electromagnetic radiation has a wavelength range corresponding to a spectral absorption range of the gas of interest.
Abstract:
A method includes receiving a gas mixture at a first pressure including at least a primary gas and a secondary gas and changing a pressure of the received gas mixture from the first pressure to a second pressure. Further, the method includes determining a spectra of the gas mixture at the second pressure, wherein at least the first spectral line of the primary gas is spectrally distinguished from at least the second spectral line of the secondary gas, identifying a peak wavelength associated with the spectrally distinguished first spectral line of the primary gas based on at least two wavelengths of the secondary gas corresponding to at least two peak amplitudes in the spectra of the gas mixture, and determining a concentration of the primary gas based on the identified peak wavelength associated with the spectrally distinguished first spectral line of the primary gas.
Abstract:
A system is presented. The system includes an absorption cell filled-with a gas-mixture, a mirror-cum-window comprising a first portion that acts as a first mirror and a second portion that acts as a first window, a second mirror, a plurality of radiation sources to generate a plurality of light beams directed into the absorption cell through the first window followed by reflection of the plurality of light beams between the first mirror and the second mirror to irradiate the gas-mixture resulting in generation of a plurality of transmitted light beams passing out of the absorption cell through the second window, a detector that detects at least one characteristic of the plurality of transmitted light beams resulting in generation of one or more response signals, and a processing subsystem that analyzes the gas-mixture at least based on the one or more response signals.
Abstract:
A method includes receiving a gas mixture at a first pressure including at least a primary gas and a secondary gas and changing a pressure of the received gas mixture from the first pressure to a second pressure. Further, the method includes determining a spectra of the gas mixture at the second pressure, wherein at least the first spectral line of the primary gas is spectrally distinguished from at least the second spectral line of the secondary gas, identifying a peak wavelength associated with the spectrally distinguished first spectral line of the primary gas based on at least two wavelengths of the secondary gas corresponding to at least two peak amplitudes in the spectra of the gas mixture, and determining a concentration of the primary gas based on the identified peak wavelength associated with the spectrally distinguished first spectral line of the primary gas.
Abstract:
A method for dissolved gas analysis is presented. The method includes the steps of irradiating a fluid with electromagnetic radiation; and determining a concentration of a gas as a function of a temperature change of the fluid in response to the irradiation. A device for such an analysis of dissolved gases in a fluid, and a system having such device are also described.