Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
Methods and systems for releasing growth factors are disclosed. In certain embodiments, a blood sample is exposed to a sequence of one or more electric pulses to trigger release of a growth factor in the sample. In certain embodiments, the growth factor release is not accompanied by clotting within the blood sample.
Abstract:
A pulse generation system for applying electric pulses across a load includes a first plurality of energy storage modules connected in series on a positive chain and configured to apply a positive potential to the load and a second plurality of energy storage modules connected in series on a negative chain and configured to apply a negative potential to the load. Each energy storage module of the positive chain and the negative chain includes a rectifier and a storage element, and at least one control element.
Abstract:
A pulse generation system for applying electric pulses across a load includes a first plurality of energy storage modules connected in series on a positive chain and configured to apply a positive potential to the load and a second plurality of energy storage modules connected in series on a negative chain and configured to apply a negative potential to the load. Each energy storage module of the positive chain and the negative chain includes a rectifier and a storage element, and at least one control element.
Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
Methods and systems for releasing growth factors are disclosed. In certain embodiments, a blood sample is exposed to a sequence of one or more electric pulses to trigger release of a growth factor in the sample. In certain embodiments, the growth factor release is not accompanied by clotting within the blood sample.
Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
Embodiments of the disclosure relate to platelet activation and/or aggregation using electric pulses. In one embodiment, a platelet-containing sample is exposed to electric pulses. At least one of the electric pulses has a duration greater than 1 microsecond and a field strength below 50 kV/cm. In another embodiment, the electric pulses may be designed with particular field strengths and durations.