Abstract:
Disclosed are methods for treating an individual with a chemotherapy-resistant primary and/or secondary malignancy that comprise administering a therapeutically effective amount of a tumor-targeted retrovector encoding a cytocidal dominant-negative Cyclin G1 construct, such as DeltaRex-G, to the individual. Also disclosed are methods in which DeltaRex-G, either alone or in conjunction with other cancer therapies and/or treatments, may be administered to ameliorate or eliminate the life-threatening effects of metastatic cancer.
Abstract:
The present disclosure teaches methods of treating a patient who has an advanced metastatic cancer, after the patient has the patient has failed at least one treatment regimen for the advanced metastatic cancer, by administering a plurality of infusions of a vector comprising a tumor signature-targeting peptide and a nucleic acid that encodes a dominant negative human cyclin G1 construct. One or more of the patient's treatment regimens may have included gemcitabine. The present disclosure also provides methods of treatment by further administering to the patient an additional therapeutic agent such as an immune-modulatory monoclonal antibody, a cytotoxic chemotherapeutic agent, an anti-angiogenesis agent, a selective tyrosine kinase inhibitor, or a monoclonal antibody directed against specific features of cells from the metastatic cancer.
Abstract:
The present disclosure teaches methods of treating a patient having an advanced metastatic cancer by administering a plurality of infusions of a first therapeutic agent comprising a tumor-targeted gene vector that encodes a cytocidal inhibitor of the CCNG1 gene product and a second therapeutic agent that affects the activity of at least one additional molecular target along the CCNG1 pathway. The additional molecular target may be Mdm2, PP2A, p53, Rb, c-Myc, or a cyclin-dependent kinase. The present disclosure also provides methods of treatment by administering a plurality of infusions of a first therapeutic agent comprising a tumor-targeted gene vector that encodes a cytocidal inhibitor of the CCNG1 gene product and a second therapeutic agent such as an immune-modulatory monoclonal antibody, a cytotoxic chemotherapeutic agent, an anti-angiogenesis agent, a selective tyrosine kinase inhibitor, or a monoclonal antibody directed against specific features of cells from the metastatic cancer. Further, the disclosure provides methods of treating a palpable tumor, methods for evaluating the role of oncogenic drivers along the Cyclin G1 pathway in a tumor, and methods of treatment that use such evaluations/analyses to guide the management of the disease.
Abstract:
Systems for pathotropic (disease-seeking) targeted gene delivery are provided, including viral particles with extremely high titers. In particular, the viral particles are engineered to specifically deliver therapeutic or diagnostic agents to a disease site, such as cancer metastic sites. Personalized dosing regimens are also provided to treat diseases such as cancer efficaciously with reduced adverse side effects.
Abstract:
This invention provides compositions and methods for treating cancer. More specifically this invention is directed to a targeted retroviral vector comprising a cytokine gene that can be administered either alone or in combination with a targeted retroviral vector comprising a cytocidal gene for treating cancer in a subject. Also provided are a kit or drug delivery system comprising the compositions for use in the methods described.
Abstract:
The present invention provides a molecular marker for the identification of pluripotent pre-mesenchymal, pre-hematopoietic stem cells. The invention further provides primitive progenitor cells identified by the molecular marker. Such cells have the potential to differentiate into both mesenchymal and hematopoietic phenotypes, as determined by a proliferative response to inductive growth factors and cytokines, and by their morphologic and cytochemical features.
Abstract:
This invention provides compositions and methods for treating cancer. More specifically this invention is directed to a targeted retroviral vector comprising a cytokine gene that can be administered either alone or in combination with a targeted retroviral vector comprising a cytocidal gene for treating cancer in a subject. Also provided are a kit or drug delivery system comprising the compositions for use in the methods described.
Abstract:
Systems for pathotropic (disease-seeking) targeted gene delivery are provided, including viral particles with extremely high titers. In particular, the viral particles are engineered to specifically deliver therapeutic or diagnostic agents to a disease site, such as cancer metastic sites. Personalized dosing regimens are also provided to treat diseases such as cancer efficaciously with reduced adverse side effects.
Abstract:
The present invention relates to compositions and methods for promoting tissue repair and regeneration. The invention provides a fusion polypeptide useful for targeting tissues for regeneration and methods of use therefore.
Abstract:
The present invention provides new compositions and methods to induce therapeutic angiogenesis locally utilizing a collagen binding domain to target an angiogenesis modulating agents. Fusion polypeptides containing a collagen binding domain linked to an angiogenesis modulating agent are provided, as are nucleic acid sequences encoding the fusion polypeptides. Also included are methods for locally altering circulation by administering a fusion polypeptide consisting of a collagen binding domain linked to an angiogenesis modulating agent, or by administering a nucleic acid sequences encoding the fusion polypeptide. Tissue grafts in which isolated tissue is treated with a fusion polypeptide consisting of a collagen binding domain linked to an angiogenesis modulating agent, or with a nucleic acid sequences encoding the fusion polypeptide are also provided, as are methods of making the grafts.