Abstract:
Disclosed is a variable optical attenuator. The variable optical attenuator includes an electrochromic device having a reflective property or a transflective property, a lens configured to convert input light to focused light or collimated light and input the focused light or the collimated light to the electrochromic device, and an outputter configured to output light reflected from the electrochromic device, in which the electrochromic device is configured to attenuate an intensity of the input light by controlling a reflectivity and a transmissivity of the input light based on an element included in the electrochromic device and a voltage to be applied to the electrochromic device.
Abstract:
Disclosed is a spectroscopic device including a planar lightwave circuit to which light passing through an optical fiber is input, a wavelength divider configured to divide a wavelength of light passing through the planar lightwave circuit, a beam splitter configured to divide a traveling direction of light passing through the wavelength divider into an external sample inlet and an internal sample inlet and adjust power of the divided light, a charge-coupled device (CCD) image sensor configured to covert light transmitted from the internal sample inlet to an electrical signal or convert light reflected by the external sample inlet to an electrical signal, a control and signal processor configured to process the electrical signal to indicate a light intensity based on each wavelength, and an input and output interface configured to perform a spectrum analysis for each wavelength using the processed electrical signal.
Abstract:
Disclosed is a method and an apparatus for selecting a wavelength in a hybrid Passive Optical Network (PON) system. The method of selecting a wavelength by a wavelength selecting apparatus in a hybrid passive optical network system includes: performing synchronization with any one of a plurality of downstream wavelengths; when the synchronization is succeeded, determining whether to select the synchronized downstream wavelength for a registration to an optical line terminal; and when it is determined to select the synchronized downstream wavelength, performing the registration to the optical line terminal through the synchronized downstream wavelength.
Abstract:
Provided is a power saving method of an optical network terminal and an optical line terminal. The optical network terminal may receive a sleep synchronization message about a first sleep group from the optical line terminal, and when the optical network terminal is included in the first sleep group, may turn OFF an optical transmitter and turn ON the optical transmitter after a first sleep cycle of the first sleep group is elapsed, thereby saving power.
Abstract:
Disclosed are an apparatus and a method capable of adjusting an upstream band for a corresponding ONU by detecting a quantity of bands occupied by a packet, not an effective user packet, among upstream transmission bands for each target object of allocation of each band in the OLT to examine whether a queue report is normal, and detecting an ONU, which transmits an abnormal queue report, according to the examination. An OLT of a PON according to an exemplary embodiment of the present disclosure includes: a frame monitoring unit configured to monitor upstream frame data received for each T-CONT; an error detection unit configured to determine whether a queue report error is generated for each T-CONT according to a result of the monitoring; and a band allocation controller configured to allocate an upstream band for an ONU, in which the queue report error is generated, separately from a normal ONU.
Abstract:
Disclosed is an adaptive deep learning inference system that adapts to changing network latency and executes deep learning model inference to ensure end-to-end data processing service latency when providing a deep learning inference service in a mobile edge computing (MEC) environment. An apparatus and method for providing a deep learning inference service performed in an MEC environment including a terminal device, a wireless access network, and an edge computing server are provided. The apparatus and method provide deep learning inference data having deterministic latency, which is fixed service latency, by adjusting service latency required to provide a deep learning inference result according to a change in latency of the wireless access network when at least one terminal device senses data and requests a deep learning inference service.
Abstract:
A multi-channel receiver optical sub assembly module for a fiber Bragg grating sensor according to an embodiment of the present invention includes a housing, a connection socket, an optical bench, a thermoelectric cooler, an arrayed waveguide grating chip, a photodiode array disposed on the optical bench and including a plurality of photodiode chips connected to the optical channels of the arrayed waveguide grating chip, and a printed circuit board which is connected to the other side of the housing while passing through the other side of the housing, of which a portion of a body is disposed on the optical bench, and which is connected to the photodiode array.
Abstract:
Disclosed is a multi-wavelength transmission apparatus including a wavelength divider to divide an optical signal by wavelength and output wavelength-divided optical signals to different positions, the optical signal being received from an optical circulator, a first cylindrical lens to diverge the wavelength-divided optical signals along an X axis and a Y axis and allow the wavelength-divided optical signals to be promoted in a Z-direction, a second cylindrical lens to diverge optical signals output from the first cylindrical lens along the X axis and the Y axis and allow the output optical signals to be promoted in the Z-direction, and a reflector to reflect optical signals output from the second cylindrical lens toward the second cylindrical lens, the first cylindrical lens being identical in shape to the second cylindrical lens and rotated by 90° in an Y-axial direction based on the second cylindrical lens.
Abstract:
Provided is a multi-channel optical subassembly. The multi-channel optical subassembly includes a first sub-mount including first and second areas having different thicknesses, a photoelectric device provided in the first area, a circuit board provided in the second area, a second sub-mount inserted into and fastened to the first guide hole and coupled to the first sub-mount, an optical fiber array fixed to the second sub-mount to provide a path through which light emitted from the photoelectric device is received or transferred, and a micro-lens array mounted on the second sub-mount. The first guide hole is provided in one of the first and second areas. The micro-lens array includes a lens collecting the light between the photoelectric device and the optical fiber array.
Abstract:
Provided is an endoscopic apparatus for thermal distribution monitoring, and more particularly, an endoscopic apparatus for thermal distribution monitoring that is capable of providing a functional image in which various images such as a real image and a thermal image, are matched to one another. The endoscopic apparatus includes: an image collecting unit including a thermal image collecting unit collecting a thermal image from an image signal of an object and a real image collecting unit collecting a real image from the image signal of the object; a controller transmitting a control signal to the image collecting unit so as to transmit the image signal to one of the thermal image collecting unit and the real image collecting unit according to a preset period; and a display displaying the collected thermal image and real image.