Abstract:
There is provided a method for transmitting, by a transmitter, a signal through an unlicensed band channel. The transmitter transmits an initial signal through the unlicensed band channel to preoccupy the unlicensed band channel when the unlicensed band channel is in an idle status. The transmitter includes a first partial subframe transmitted after the initial signal in a frame burst depending to transmission timing of the initial signal. Further, the transmitter transmits the frame burst through the unlicensed band channel.
Abstract:
A method and an apparatus for transmitting a resource, and a method for the HARQ retransmission using an unlicensed band include an operation of performing clear channel assessment (CCA) for the unlicensed band; and an operation of occupying a channel of the unlicensed band according to the CCA and determining whether or not the resource is transmitted based on a position of a transmission time interval (TTI) within a channel occupancy time (COT) for the channel.
Abstract:
There are provided a method and apparatus for transmitting a discovery reference signal (DRS) through transmitting the DRS to a user equipment through a channel of an unlicensed band, receiving measurement report for measurement performed based on the DRS from the user equipment, and scheduling the cell of the unlicensed band based on the measurement report and providing a service to the user equipment through the cell of the unlicensed band.
Abstract:
Disclosed herein is a method for transmitting, by a terminal, an uplink signal using a first cell type representing a cell using a licensed band frequency and a second cell type representing a cell using an unlicensed band frequency. The terminal configures at least one first radio bearer (RB) being able to use a radio resource for the first cell type and a radio resource for the second cell type for an uplink transmission. The terminal configures at least one second RB being able to use a radio resource for the first cell type for an uplink transmission. The terminal includes at least one first logical channel corresponding to the at least one first RB in a first logical channel group, and the terminal includes at least one second logical channel corresponding to the at least one second RB in a second logical channel group.
Abstract:
A communication method for a third device that controls a first link established directly between a first device and a second device is provided. The third device allocates a first link identifier for identifying the first link. The third device transmits first information including the first link identifier to the first device and the second device. The third device receives, from the first device and the second device, second information including allocation acceptance information indicating the acceptance or rejection of allocation of the first link identifier.
Abstract:
A multimode apparatus and a communication method thereof are disclosed. If the multimode apparatus is chosen to serve as a relay station due to a base station having a backhaul link problem, it sets up a first relay link with a first base station. Upon receiving a request for releasing the first relay link from the first base station even though the backhaul link is not restored, the multimode apparatus sets up a second relay link with a second base station, or configures and operates a standalone network or an independent network.
Abstract:
A communication method of a terminal that can operate in a relay mode or a base station mode is provided. When the terminal, having received a service from a first base station, detects that a service connection to the first base station is unavailable, the terminal searches for a second base station, which is an available neighboring base station. The terminal transmits a ranging request message including a base station identifier of the first base station to the second base station.
Abstract:
A base station divides a subframe into a downlink time duration for downlink, an uplink time duration for uplink, and a guard period between the downlink time duration and the uplink time duration. The base station transmits a downlink control channel including information on a downlink packet duration allocated for downlink transmission of a terminal and information on an uplink packet duration allocated for uplink transmission of the terminal to the terminal in the downlink time duration.
Abstract:
An apparatus for receiving a signal through an unlicensed band includes: a processor, a memory, and a radio frequency unit, wherein the processor executes a program stored in the memory to perform: receiving a secondary synchronization signal (SSS) in at least one remaining subframe except a subframe 0 or a subframe 5 of a plurality of subframes included in a discovery signal measurement timing configuration (DMTC), and detecting the SSS by using a subframe number of the subframe 0 or the subframe 5.
Abstract:
A method for a first terminal communicating with a base station to perform direct communication with a second terminal is provided. The first terminal determines first timing for transmitting or receiving a first signal to or from the base station. Next, the first terminal determines second timing for transmitting a second signal for terminal discovery to the second terminal. When the first timing and the second timing overlap, the first terminal then changes either the first timing or the second timing.