SYSTEMS AND METHODS FOR ARTIFICIAL INTELLIGENCE-BASED IMAGE ANALYSIS FOR DETECTION AND CHARACTERIZATION OF LESIONS

    公开(公告)号:US20220005586A1

    公开(公告)日:2022-01-06

    申请号:US17008411

    申请日:2020-08-31

    Abstract: Presented herein are systems and methods that provide for improved detection and characterization of lesions within a subject via automated analysis of nuclear medicine images, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) images. In particular, in certain embodiments, the approaches described herein leverage artificial intelligence (AI) to detect regions of 3D nuclear medicine images corresponding to hotspots that represent potential cancerous lesions in the subject. The machine learning modules may be used not only to detect presence and locations of such regions within an image, but also to segment the region corresponding to the lesion and/or classify such hotspots based on the likelihood that they are indicative of a true, underlying cancerous lesion. This AI-based lesion detection, segmentation, and classification can provide a basis for further characterization of lesions, overall tumor burden, and estimation of disease severity and risk.

    Systems and methods for artificial intelligence-based image analysis for detection and characterization of lesions

    公开(公告)号:US12243637B2

    公开(公告)日:2025-03-04

    申请号:US18209676

    申请日:2023-06-14

    Abstract: Presented herein are systems and methods that provide for improved detection and characterization of lesions within a subject via automated analysis of nuclear medicine images, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) images. In particular, in certain embodiments, the approaches described herein leverage artificial intelligence (AI) to detect regions of 3D nuclear medicine images corresponding to hotspots that represent potential cancerous lesions in the subject. The machine learning modules may be used not only to detect presence and locations of such regions within an image, but also to segment the region corresponding to the lesion and/or classify such hotspots based on the likelihood that they are indicative of a true, underlying cancerous lesion. This AI-based lesion detection, segmentation, and classification can provide a basis for further characterization of lesions, overall tumor burden, and estimation of disease severity and risk.

    Systems and methods for deep-learning-based segmentation of composite images

    公开(公告)号:US11321844B2

    公开(公告)日:2022-05-03

    申请号:US17008404

    申请日:2020-08-31

    Abstract: Presented herein are systems and methods that provide for improved 3D segmentation of nuclear medicine images using an artificial intelligence-based deep learning approach. For example, in certain embodiments, the machine learning module receives both an anatomical image (e.g., a CT image) and a functional image (e.g., a PET or SPECT image) as input, and generates, as output, a segmentation mask that identifies one or more particular target tissue regions of interest. The two images are interpreted by the machine learning module as separate channels representative of the same volume. Following segmentation, additional analysis can be performed (e.g., hotspot detection/risk assessment within the identified region of interest).

Patent Agency Ranking