Abstract:
Provided is a light source apparatus which include a light emitting unit including a light emitting area of unit of surface, an antenna disposed along the outer periphery so as not to encroach on a light emitting area and a driving unit, and a driving unit processing wireless power received from the antenna and supplying the processed wireless power to the light emitting unit. According to the light source apparatus, miniaturization may be accomplished and a shielding phenomenon of an antenna reception signal caused by the light emitting area may be suppressed.
Abstract:
Organic electroluminescent devices are provided. The organic electroluminescent device may includes a first light emitting part including a transparent first electrode, a first organic light emitting layer, and a transparent second electrode which are stacked, and a capping layer stacked on the first light emitting part. The first light emitting part emits light of a first wavelength, and the capping layer reflects the light of the first wavelength and transmits light of a second wavelength. Thus, the lights of the first and second wavelengths are emitted in high efficiency.
Abstract:
Provided is a hybrid light emitting device. The hybrid light emitting device may include the first light emitting part on the substrate, the capping layer, and the second light emitting part. The first light emitting part may emit light having a first wavelength, and the first light emitting part may include a first electrode, an organic emitting layer, and a second electrode sequentially disposed. A second light emitting part may generate light having a second wavelength. A capping layer may be disposed between the organic emitting layer and the second light emitting part. The capping layer may reflect light having the first wavelength and transmit light having the second wavelength.
Abstract:
Provided is a method of fabricating an organic scattering layer. The method may include providing a deposition apparatus with a reaction chamber and a source chamber, loading a substrate in the reaction chamber, supplying carrier gas into the source chamber that may be configured to supply an evaporated organic source material into the reaction chamber, a temperature of the carrier gas ranging from 25° C. to 50° C., and spraying the carrier gas and the evaporated organic source material into the reaction chamber through a showerhead to deposit an organic scattering layer on the substrate, the organic scattering layer including organic particles, which may be provided in a molecularized form of the evaporated organic source material, and thereby having an uneven surface.
Abstract:
Disclosed are organic light emitting devices and methods of fabricating the same. The organic light emitting device may include light scattering parts having irregular island-shapes irregularly arranged. The organic light emitting device may further include a planarization layer, a first electrode, an organic light emitting layer, a second electrode, and an encapsulation layer. The light scattering parts may be formed using an organic solution having a low refractive index to improve light extraction efficiency of the organic light emitting device. Additionally, the light scattering parts of the irregular island-shapes may improve the light extraction efficiency of lights of all wavelengths, so as to be applied to an organic white light emitting device. The light scattering parts of the irregular island-shapes may be formed using the organic solution by a dewetting phenomenon. The light scattering parts may be formed at a temperature of about 250 degrees Celsius or less.
Abstract:
Provided is a method of fabricating a light functional substrate. The method includes applying particles onto a surface of water contained in a container to form a monolayer constituted by the particles, immersing a substrate into the container, drawing the substrate out of the container to form patterns constituted by the particles on the substrate in a first direction, and forming a planarization film covering the patterns on the substrate.
Abstract:
An organic light emitting device is provided that includes a substrate; an embossing layer provided on the substrate; a planarization layer provided on the embossing layer; a first electrode provided on the planarization layer; an organic light emitting layer provided on the first electrode; and a second electrode provided on the organic light emitting layer. The planarization layer may include a first planarization layer provided on the embossing layer; and a second planarization layer provided on the first planarization layer. The embossing layer may have a refractive index ranging from about 1.3 to about 1.5. The planarization layer may include a first planarization layer having a surface roughness of about 10 nm to about 50 nm and a refractive index that ranges from about 1.8 to about 2.5; and a second planarization layer provided on the first planarization layer and having a surface roughness of less than about 10 nm.
Abstract:
The inventive concept provides light emitting devices and methods of manufacturing a light emitting device. The light emitting device may include a transparent substrate including a first region and a second region, a first transparent electrode disposed on a first surface of the transparent substrate, a second transparent electrode facing and spaced apart from the first transparent electrode, an organic light emitting layer disposed between the first and second transparent electrodes, an assistant electrode disposed between the first and second transparent electrodes and selectively masking the second region, and a light path changing structure disposed on a second surface of the transparent substrate and selectively masking the second region.
Abstract:
Provided is a light source apparatus which include a light emitting unit including a light emitting area of unit of surface, an antenna disposed along the outer periphery so as not to encroach on a light emitting area and a driving unit, and a driving unit processing wireless power received from the antenna and supplying the processed wireless power to the light emitting unit. According to the light source apparatus, miniaturization may be accomplished and a shielding phenomenon of an antenna reception signal caused by the light emitting area may be suppressed.