Abstract:
A swept wavelength meter provides a real-time wavelength calibration scheme for a swept laser. The calibration scheme generates an electrical signal from a swept optical output of the swept laser that is cyclical with respect to the wavelength of the swept optical output over a defined range of wavelengths. The point on the electrical signal at any given time provides an accurate phase for the swept optical output at that point. The electrical signal in turn is calibrated by generating calibration references from the swept optical output using known absorption lines within the defined range of interest. The wavelength of the swept laser is calibrated as a function of a reference wavelength from the known absorption lines and the phase at the given point. Simultaneously forward and reflective measurements may be taken, with the forward measurement being used as a normalizing measurement for determining insertion and return loss automatically for a device under test.
Abstract:
A mechanical optical switch having opposing first and second optical transmission paths, such as optical fibers, forming an optical interface and rotating about respective independent and offset first and second rotational axes for positioning the fibers on respective first and second offset and intersecting closed curves operates to rotate the input or first optical fiber on its closed curve to one of the two intersecting points on its closed curve in response to the angular coordinate representative of the position of fiber at the intersecting point matching the intersecting point of the second optical fiber. The output or second optical fiber is rotated on its closed curve to the intersecting point corresponding to the intersecting point of the first fiber in response to the angular coordinate representative of the position of the second fiber at the intersecting point. These rotational movements may be performed sequentially, but in the preferred embodiment they are performed simultaneously. Since the offset closed curves intersect at two unique points, the speed of the switch may be increased by selecting the intersecting points closest to the input and output fibers prior to rotating the fibers. A plurality of optical fibers can rotate about one or both of the independent and offset rotational axes for establishing intersecting points on their respective closed curves.
Abstract:
A controller (124) analyzes a set of OTDR return data stored in a memory (134) and determines if a particular event is an echo by comparing its measured location and/or amplitude (loss) with calculated locations (208) and amplitudes for various-order echoes. Possible echoes are optionally assigned an echo probability level (220, 224, 228) based on the degree to which their measured locations and/or amplitudes match the calculated echo locations and amplitudes. Possible echoes are appropriately marked (210) so that an OTDR display (136) indicates to a user which events are possible echoes. Optionally, events may be marked as having a low, medium, or high probability of being echoes.
Abstract:
The present invention provides an optical system having an array of light emitting semiconductor devices to performing an operation that have multiple characteristics associated with performing the operation. The array includes at least one detector located within the array to selectively monitor multiple characteristics of the light emitting semiconductor devices and is configured to generate a signal corresponding to the selected characteristic. A controller is configured to control the light emitting semiconductor devices in response to the signal from the at least one detector. At least one of the multiple characteristics may be concentrated at an area of the array and the at least one detector may be located within the array at the area of the array to selectively monitor characteristic that is concentrated at the area of the array.
Abstract:
A dense array of semiconductor devices having an array of micro-reflectors, the micro-reflectors having characteristics that enhance dense packing of the array in balance with collection and collimation of the array's radiant output.
Abstract:
An remote fiber test system includes a non-blocking N.times.N optical switch having N input ports and N output ports with one of the input ports coupled to a measurement test instrument for examining any of the optical fibers coupled to the output ports. The non-blocking switch includes a plurality of N input mechanical optical switches and an plurality of N output mechanical optical switches with each of the input mechanical optical switches having an input optical transmission path representing one of the input ports and each of the output mechanical optical switches having an output optical transmission path representing one of the output ports. Each input mechanical optical switch has N output optical transmission paths which each optical transmission path being coupled to one of the input optical transmission paths of each of the output mechanical optical switches. Each output mechanical optical switch has N input optical transmission paths with each optical transmission path being coupled to one of the output optical transmission paths of each input mechanical optical switch. Interconnecting optical transmission paths may be used to couple the N output optical transmission paths of the input mechanical optical switches with the input optical transmission paths of the output mechanical optical switches.
Abstract:
An remote fiber test system includes at least one mechanical optical switch has opposing input and output optical fiber bundles disposed within offset ferrules with at least one input fiber coupled to a measurement test instrument and each of the output fiber coupled to an optical fiber link via wavelength division multiplexers. Each ferrule of the optical switch is mounted in three-point kinematically correct V-groove holder allowing the optical fibers in each optical fiber bundle to traverse on a closed curve path during the rotation of the respective ferrules. The closed curve paths of each optical fiber in one of the optical fiber bundles intersect at least one of the closed curve paths of the optical fiber in the opposing optical fiber bundles. The intersection points of two opposing closed curve paths establish the optimum positioning locations for two opposing fibers.
Abstract:
An M.times.N mechanical optical switch has opposing input and output optical fiber bundles disposed within offset ferrules. Each ferrule is mounted in three-point kinematically correct V-groove holder allowing the optical fibers in each optical fiber bundle to traverse on a closed curve path during the rotation of the respective ferrules. The closed curve paths of each optical fiber in one of the optical fiber bundles intersect at least one of the closed curve paths of the optical fiber in the opposing optical fiber bundles. The intersection points of two opposing closed curve paths establish the optimum positioning locations for two opposing fibers. Offsetting the axes of rotation of the opposing optical fiber bundles and mounting the bundles in a three-point kinematically correct holder produces a mechanical optical switch having superior cycle-to-cycle repeatability, long term repeatability, and absolute alignment using loosely toleranced components.
Abstract:
A high resolution optical fault locator for single mode applications uses a high power, short wavelength laser for generating narrow optical pulses that are launched into a single mode fiber under test. The laser output is coupled to a multimode coupler whose output is coupled to a multimode output fiber. The multimode output fiber is fusion spliced with a single mode fiber, which is coupled to a front panel connector for connecting the fiber under test to the fault locator. An optical detector that is compatible with the output laser is coupled to the multimode coupler to receive the reflected light from the fiber under test. The high resolution fault locator is useful in examining single mode local area networks where many closely spaced fiber connections exist.