Abstract:
In one embodiment, a device in a network joins a fog-based malware defense cluster comprising one or more peer devices. The device and each peer device in the cluster are configured to execute a different set of local malware scanners. The device receives a file flagged as suspicious by a node in the network associated with the device. The device determines whether the local malware scanners of the device are able to scan the file. The device sends an assessment request to one or more of the peer devices in the malware defense cluster, in response to determining that the local malware scanners of the device are unable to scan the file.
Abstract:
In an example embodiment herein, there is provided methods and a system for cloud-assisted threat defense for connected vehicles. A vehicle suitably includes an on-board computer system for operating and/or controlling various systems on the vehicle. The on-board computer system suitably operates in connection with or includes an on-board threat defense module for detecting and protecting against malware attacks and other security threats to the vehicle. In an example embodiment, a cloud-based security component or security cloud assists with the detection and protection against security threats and malware attacks to the vehicle while minimizing the processing load and memory requirements for the on-board threat defense module.
Abstract:
Controlled startup of devices is based on dynamic statistical predictions. Timely startup of onboard associated vehicle devices is based on dynamic statistical predictions and driver proximity to the vehicle. An apparatus for timely startup includes an interface operatively coupled with a power consuming device and control logic coupled with the interface. The control logic is operable in a first mode to perform processing for determining a presence of a first condition of the vehicle, and to selectively activate the power consuming device of the vehicle, via the interface, responsive to determining the presence of the first condition. The control logic is operable in a second mode to suspend, via the interface, the processing for determining the presence of the first condition of the vehicle. The control logic selectively transitions between the first and second modes in accordance with a stochastic modeling of the presence of the first condition over time.
Abstract:
In one embodiment, a first device in a network receives information regarding one or more nodes in the network. The first device determines a property of the one or more nodes based on the received information. The first device determines a degree of trustworthiness of the one or more nodes based on the received information. The first device attests to the determined property and degree of trustworthiness of the one or more nodes to a verification device. The verification device is configured to verify the attested property and degree of trustworthiness.
Abstract:
A system authenticates in-vehicle electronic devices having unequal capabilities such as having varying different communication and processing capabilities. A Connected Vehicle Gateway portion of a selected in-vehicle device acts as an onboard authentication proxy and onboard key server functionality for other in-vehicle devices, and serves as an interface between an in-vehicle network and one or more associated external networks, thereby eliminating the need for explicit peer discovery protocol and the requirement of devices to perform key establishment with each individual communication peer. Instead, each in-vehicle device establishes the group keys as a result of its authentication with the onboard key server and uses the group keys to locally generate and update its session keys. The onboard key server selectively obtains the keys from one or more off-board authentication servers and distributes them to selected in-vehicle devices.
Abstract:
A system authenticates in-vehicle electronic devices having unequal capabilities such as having varying different communication and processing capabilities. A Connected Vehicle Gateway portion of a selected in-vehicle device acts as an onboard authentication proxy and onboard key server functionality for other in-vehicle devices, and serves as an interface between an in-vehicle network and one or more associated external networks, thereby eliminating the need for explicit peer discovery protocol and the requirement of devices to perform key establishment with each individual communication peer. Instead, each in-vehicle device establishes the group keys as a result of its authentication with the onboard key server and uses the group keys to locally generate and update its session keys. The onboard key server selectively obtains the keys from one or more off-board authentication servers and distributes them to selected in-vehicle devices.
Abstract:
In an example embodiment herein, there is provided methods and a system for cloud-assisted threat defense for connected vehicles. A vehicle suitably includes an on-board computer system for operating and/or controlling various systems on the vehicle. The on-board computer system suitably operates in connection with or includes an on-board threat defense module for detecting and protecting against malware attacks and other security threats to the vehicle. In an example embodiment, a cloud-based security component or security cloud assists with the detection and protection against security threats and malware attacks to the vehicle while minimizing the processing load and memory requirements for the on-board threat defense module.
Abstract:
A gateway apparatus supports differentiated secure communications among heterogeneous electronic devices. A communication port communicates via communication networks of different types with two or more associated devices having diverse secure communication capabilities. The gateway logic selectively authenticates the associated devices for group membership into a Secure Communication Group (SCG), and selectively communicates Secure Communication Group Keys (SCGKs) to the devices having the diverse secure communication capabilities for selectively generating session keys locally by the associated devices for mutual secure communication in accordance with the group membership of the associated devices in the SCG.