Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
A method of reducing memory requirement in the compensation memory unit of a scanner. The method includes providing an even compensation data value and an odd compensation data value and averaging the two to produce an odd-even compensation data value. Only half as much memory space is required to hold the averaged odd-even compensation data values.
Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
A shading correction is employed for a scanner to correct shading distortion. However, an image corrected with the shading corrective curve has shading noise lines due to the effects of various factors in the producing process of the shading corrective curve. The characteristic of the shading noise is that the each value of any primary color channel, of each pixel in a line is higher or lower than of the adjacent two pixels in other lines, wherein a color channel is one of red, green, or blue channel. Hence, the quality of the image is improved by removing the shading noise detected from the characteristic described above.
Abstract:
A shading correction is employed for a scanner to correct shading distortion. However, an image corrected with the shading corrective curve has shading noise lines due to the effects of various factors in the producing process of the shading corrective curve. The characteristic of the shading noise is that the each value of any primary color channel, of each pixel in a line is higher or lower than of the adjacent two pixels in other lines, wherein a color channel is one of red, green, or blue channel. Hence, the quality of the image is improved by removing the shading noise detected from the characteristic described above.
Abstract:
An image data sequencing method for a memory unit inside an optical scanning device. The image data sequencing method is particularly suitable for scanning a line of pixels with each pixel comprising a plurality of primary colors. The image data sequencing method involves scanning a line of pixels to obtain the data for a primary or secondary color. The pixels within the scan line are subdivided into groups. A storage space is reserved both before and after the address space inside the memory unit for holding the scanned primary or secondary color data so that all the primary or secondary color data constituting a pixel are in a fixed sequence next to each other inside the memory unit. When all the primary or secondary color data of pixels within a group are secured, the group of data is released from the memory unit.
Abstract:
In accordance with the present invention, a method and a system for increasing scanning speed are provided. The method comprises steps of determining a transmission rate of a transit interface, scanning an original to generate an image data, and adjusting a cycle time of the image data to change a data generated rate responsive to the transmission rate of the transit interface. The key aspect of the present invention is by adjusting the cycle time of a state machine to change the data generated rate corresponding to the transmission rate of the transit interface. Therefore, in response to the transmission rate of the transit interface, the cycle time of the state machine is adjusted to produce the data at a rate that prevents the smearing process. Thus, incorporated with the present invention, the possibility of memory buffer full is reduced leading to the reduction in the time wasting on start-stop processes and therefore the overall scanning speed is increased without requiring the increase in size of a memory buffer.
Abstract:
A method for detecting a response (grey level) of each probe zone on a test strip includes providing a test strip having a color pattern. The color pattern occurs in response to a solution contacting with the test strip and includes color lines arranged in sequence. Each color line represents a probe zone of the test strip. A whole image of the test strip is captured and is selected at least one scan line perpendicular to the color lines. A pixel position of the scan line having a minimum pixel value corresponding to a bottom edge of the test strip is set and the pixel position is used as a reference to identify respective pixel positions of the color lines on the scan line.
Abstract:
A method of automatically adjusting sharpening weighting value in an image sharpening process is disclosed. The method utilizes scanning a correction board having a black reference region, a white reference region and a plurality of line pair regions to aid the calculations of the modulation transfer function value and noise value. The method automatically adjusts weighting values of a sharpening function and avoids accompanying noise increase simultaneously in an image sharpening process performed in an image processing apparatus and thereby high quality images with high signal/noise ratio can be provided.