Abstract:
Systems and methods in accordance with various embodiments of the invention enable communicating using nested Low Density Parity Check (LDPC) codes. A nested LDPC code is an LDPC code having a full blocklength, where shorter blocklengths of the nested LDPC code can be utilized as shorter blocklength LDPC codes. In certain embodiments, a transmitter utilizes a nested LDPC code to communicate via a point-to-point connection. In several embodiments, multiple transmitters utilize nested LDPC codes to communicate simultaneously via a Random Access Channel. One embodiment includes a transmitter capable of encoding a message as symbols using a nested LDPC code until a feedback message indicating an end of epoch message is received. A receiver can determine whether a decoding rule is satisfied at predetermined decode times and transmit an end of epoch message when the decoder can decode a message based upon the nested LDPC code.
Abstract:
Systems and methods for characterizing networks are disclosed. In several embodiments, a network analyzer applies a network analysis to a network that replaces components of the network in a model of the network with equivalent or bounding models. The network analyzer can then characterize the simplified model of the network and an assessment can be made concerning the accuracy of the characterization of the network.
Abstract:
Systems and methods for random access communication in accordance with various embodiments of the invention are described in which receivers can handle uncoordinated transmissions of a large and unknown number of transmitters. Communication systems in accordance with many embodiments of the invention include a plurality of transmitters that encode message data as symbols using a rateless code. During transmission, the transmitters receive feedback messages at a predetermined set of potential decoding times until an end of epoch message is received. A receiver transmits at least one start of epoch message and, at each of a predetermined set of decoding times, determines whether a decoding rule is satisfied. When the decoding rule is satisfied, the receiver can decode at least one message from observed symbols based upon the rateless code. The receiver can end the transmission epoch by transmitting an end of epoch message.
Abstract:
Systems and methods for utilizing cooperation facilitators to achieve joint message and network state cooperation in accordance with various embodiments of the invention are disclosed. One embodiment of the invention includes: a plurality of transmitters; a receiver that has access to at least partial network state information and that includes a decoder configured to decode signals received via a multiple terminal channel from the plurality of transmitters using the at least partial network state information; and a cooperation facilitator. In addition, at least some of the plurality of transmitters are configured to transmit message information to the cooperation facilitator and the cooperation facilitator is configured to generate cooperation parameters based upon the message information and the manner in which state information is utilized by the receiver to decode signals received via the multiple terminal channel. In addition, the cooperation facilitator is configured to transmit cooperation parameters to the plurality of transmitters that select codewords based at least in part upon the received cooperation parameters.
Abstract:
Systems and methods for improved data transmission utilizing a communication facilitator are described in accordance with embodiments of the invention. One embodiment includes a plurality of nodes, that each comprise: a transmitter; a receiver; and an encoder that encodes message data for transmission using a plurality of codewords; a cooperation facilitator node comprising: a transmitter; and a receiver; wherein the nodes are configured to transmit data parameters to the cooperation facilitator; wherein the cooperation facilitator is configured to generate cooperation parameters based upon the data parameters received from the nodes; wherein the cooperation facilitator is configured to transmit cooperation parameters to the nodes; and wherein the encoder in each of the nodes selects a codeword from the plurality of codewords based at least in part upon the cooperation parameters received from the communication facilitator and transmit the selected codeword via the multiple access channel.
Abstract:
A computer-based peer-to-peer anonymous networking using a coding scheme with a formal information theoretic security characterization to construct a corresponding overlay subgraph is presented. A code construction based on linear coding which can be used for data transfer in an anonymous network is also presented. Various performance and simulation of the presented codes are provided in the Annex A1 which makes part of the present disclosure.