Abstract:
A method is provided in one example embodiment and includes receiving at a first network node a request to obtain data from a second network node, wherein the first and second network nodes are connected via n access networks; partitioning the request into n subrequests proportionally based on relative throughputs of the n access networks; and transmitting each of the n subrequests to the second network node via a respective one of the n access networks.
Abstract:
In one method embodiment, receiving a video stream comprising a first compressed picture without associated time stamp information and a second compressed picture having associated first time stamp information, the second compressed picture following the first compressed picture in transmission order; deriving second time stamp information based on the first time stamp information; and processing the first compressed picture based on the second time stamp information.
Abstract:
In one embodiment, an encapsulator device receives a source stream of encoded packets in a first transport format and converts the source stream to packets of an output stream in a second transport format for communication over a data network. The encapsulator device generates a mapping stream with information indicating which packets in the source stream are used to generate the output stream. The output stream of the encapsulator device is coordinated with the output stream of other encapsulator devices by sending the mapping stream to the other encapsulator devices in the network. The other encapsulator devices use the mapping stream to generate identical output streams.
Abstract:
In one embodiment, an encapsulator device receives a source stream of encoded packets in a first transport format and converts the source stream to packets of an output stream in a second transport format for communication over a data network. The encapsulator device generates a mapping stream with information indicating which packets in the source stream are used to generate the output stream. The output stream of the encapsulator device is coordinated with the output stream of other encapsulator devices by sending the mapping stream to the other encapsulator devices in the network. The other encapsulator devices use the mapping stream to generate identical output streams.
Abstract:
In one embodiment, a method that receives a manifest for plural encoded representations of a single content stream, each representation fragmented into plural chunks, each representation comprising a different quality level, the manifest listing a plurality of representations, each representation comprising the plural chunks at one of a plurality of quality levels, and requests one of the plural chunks based on selection of one of the plurality of quality levels explicitly indicated in the manifest.
Abstract:
In one embodiment, a client device includes a processor to send a first GET request to a server for a first data chunk of a data item, a communication interface to receive packets of the first data chunk, a buffer to buffer the packets, wherein the processor is operative to obtain a first measure of round trip time (RTT), the processor is operative to estimate a time t1 when receipt of the last packet of the packets of the first data chunk in the buffer will be completed, the processor is operative to determine a next fetch time, t2, to send a second GET request to the server for a second data chunk of the data item, based on the time t1 adjusted by a portion of the first measure of RTT, the processor is operative to send the second GET request to the server at about time t2.
Abstract:
In one method embodiment, providing a multiplex of compressed versions of a first video stream and a first audio stream, each corresponding to an audiovisual (A/V) program, the first video stream and the first audio stream each corresponding to a first playout rate and un-synchronized with each other for an initial playout portion; and providing a compressed version of a second audio stream, the second audio stream corresponding to a pitch-preserving, second playout rate different than the first playout rate, the second audio stream synchronized to the initial playout portion of the first video stream when the first video stream is played out at the second playout rate, the first audio stream replaceable by the second audio stream for the initial playout portion.
Abstract:
In one embodiment, a method includes transmitting media from a source to a plurality of receivers in a first source-specific multicast (SSM) channel and transmitting from the source to said plurality of receivers, a channel change message in an in-band transport control protocol message identifying a second SSM channel, wherein the receivers are configured to join said second SSM channel in response to said channel change message.
Abstract:
Content is received within a network at a content receiver and that is communicated from a content source, where the content comprises packets to be sent to the content receiver that are marked with a first drop priority or a second drop priority. A network priority is detected at the content receiver that is based at least in part upon a ratio of packets marked with the first drop priority to packets marked with the second drop priority within the content and also a determination at the content receiver of a rate of packets dropped that are marked with the first drop priority and a rate of packets dropped that are marked with the second drop priority.
Abstract:
Content is received within a network at a content receiver and that is communicated from a content source, where the content comprises packets to be sent to the content receiver that are marked with a first drop priority or a second drop priority. A network priority is detected at the content receiver that is based at least in part upon a ratio of packets marked with the first drop priority to packets marked with the second drop priority within the content and also a determination at the content receiver of a rate of packets dropped that are marked with the first drop priority and a rate of packets dropped that are marked with the second drop priority.