Abstract:
Embodiments describe a method of measuring noise and interference within transceivers of an OFDM wireless transmission system, or similar communication system, including a number of receivers communicating with one or more base stations in cell or sector arrangements. The transmitter schedules a transmission burst for a non-existent user (receiver) using wireless transmission traffic. In an OFDM system, this corresponds to a certain set of subcarriers in the time/frequency arrangement. Thus, in the receive frame structure, the data and pilot subcarriers are guaranteed to be only noise and interference from adjacent sectors. The receiver can accurately measure the noise and interference without needing to cancel out the transmitted signal. Therefore, the system is assured that there is no desired signal as part of this measurement. The noise and interference measurement process can be appropriately scheduled so that it does not impact the overall throughput of the system. This mechanism creates a deterministic place (in time and/or frequency) within the transmission, where no desired signal is required.
Abstract:
Embodiments provide approaches for sub-sampling a two-component precoder codebook to reduce the overhead associated with signaling the codebook in periodic Channel State Information (CSI) reports from a user equipment (UE) to a base station. In one embodiment, a first component of the codebook is sub-sampled to accommodate a payload capacity of a Physical Uplink Control Channel (PUCCH) CSI Report of Type 1. In another embodiment, both the first component and the second component of the codebook are sub-sampled to accommodate a maximum payload capacity associated with a PUCCH CSI report.
Abstract:
A method and apparatus of selecting a number of uplink sounding sub-carriers are disclosed. One method includes estimating an uplink channel of between a base station and a subscriber. A time domain channel response is determined from the estimated uplink channel. A sub-carrier distribution of uplink sounding sub-carriers is selected based on characteristics of the time domain channel response, wherein the distribution defines a spacing of pilot sub-carriers within the uplink sounding symbol. The subscriber transmits uplink sounding symbols having the selected sub-carrier distribution.
Abstract:
Systems using a transmit precoder codebook designed for a four-transmitter (4Tx) antenna configuration are described. The 4Tx antenna configuration is an attractive option for base stations in cellular network environments due to site-acquiring advantages and robust performance. In an embodiment, the transmit precoder codebook can be used for a variety of transmit antenna configurations and has a high resolution to enable beamforming and/or nulling. In another embodiment, the transmit precoder codebook is a two-component codebook, with a first precoder component signaled at a first frequency and a second precoder component signaled at a second higher frequency.
Abstract:
Embodiments provide methods and systems for transmitting an emergency (SOS) message from a user (UE) to a cellular network in a highly robust and energy efficient manner. Specifically, embodiments enable the SOS message to be sent in a synchronous manner despite the asynchronous nature of the network, which significantly enhances the probability of successful reception of the SOS message by at least one base station (eNodeB) of the network. Embodiments further provide highly robust SOS message transmission and reception schemes configured to enhance the successful detection and decoding of the SOS message by at least one base station of the cellular network. In addition, embodiments enable the synchronous transmission of the SOS message to the network without requiring network attachment by the UE. This makes embodiments highly suited for emergency situations in which network coverage is affected and can enable significant and precious power savings at the UE.