Abstract:
A display panel and a display device are disclosed. The display panel comprises: a gate line and a common electrode structure extended along a first direction; and a data line extended along a second direction. the gate line, the common electrode structure, and the data line are intercrossed with each other and correspond to a sub-pixel; one end of the data line is connected with a source driving circuit and the other end of the data line is connected with a touch sensing terminal; and one end of the common electrode structure is connected with a common voltage input terminal and the other end of the common electrode structure is connected with a touch transmitting terminal.
Abstract:
The present disclosure provides an array substrate, which includes a flexible substrate and an array layer formed on the flexible substrate. The array layer includes: data lines, gate lines, thin film transistors and a driving unit. The driving unit is configured to output data driving signals to connected data lines. The data lines includes a first data line connected to thin film transistors of a first number and a second data line connected to thin film transistors of a second number. The number of sub-signals in a data driving signal outputted to the first data line by the driving unit within a time period of one frame is the first number. The number of sub-signals in a data driving signal outputted to the second data line by the driving unit within a time period of one frame is the second number.
Abstract:
The embodiments of the present application disclose a touch control display panel and a manufacturing method thereof, a touch control display screen and a spliced screen. The touch control display panel comprises: A substrate; A driving circuit layer, wherein the driving circuit layer comprises a driving line and a data line, a touch control row electrode and a touch control column electrode, the touch control row electrode is connected to at least one row auxiliary electrode via at least one first via hole, and each row of touch control row electrodes are connected to each other in series via the row auxiliary electrode; the touch control column electrode is connected to at least one column auxiliary electrode through at least one second via, and each column touch control column electrode is connected to each other in series through the column auxiliary electrode.
Abstract:
The present disclosure relates to a display panel and a terminal device. The display panel includes a display region. At least a part of the display region is a transparent region. The transparent region has a plurality of pixel rows distributed along a column direction, and each of the plurality of pixel rows includes pixels and transparent portions arranged in a row direction. The pixel rows include first pixel rows and second pixel rows, transparent portions each arranged between two adjacent pixels in each of the first pixel rows are first transparent portions, and transparent portions each arranged between two adjacent pixels in each of the second pixel rows are second transparent portions. A width of each of the first transparent portions in the row direction is greater than a width of each of the second transparent portions in the row direction.
Abstract:
A display panel and a driving method thereof, and a display apparatus are provided. In the present disclosure, external compensation circuits electrically connected to pixel circuits are added. The external compensation circuits are configured to adjust anode voltages of light emitting devices to cause the anode voltages of the light emitting devices to be consistent with voltages of data voltage ends.
Abstract:
A display substrate and a display device. The display substrate includes a pixel circuit in which the driving circuit controls a driving current for driving the light emitter element to emit light; the first light emission control circuit applies a first voltage to a first terminal of the driving circuit in response to a first light emission control signal; the second light emission control circuit applies the driving current to the light emitter element in response to a second light emission control signal; the first reset circuit applies a first reset voltage to the control terminal of the driving circuit in response to a first reset signal; the first reset signal and the first light emission control signal are simultaneously turn-on signals during a period; the first light emission control line and the second light emission control line extend along a first direction and are arranged in a second direction.
Abstract:
A pixel driving circuit and a driving method thereof, and a display panel are provided. The pixel driving circuit includes a driving sub-circuit, a reset sub-circuit, a light-emitting control sub-circuit, and a first compensation sub-circuit, the reset sub-circuit, the light-emitting control sub-circuit, and the first compensation sub-circuit are configured to, in an initialization phase, under control of a first driving signal and a second driving signal, provide the first power supply voltage provided by the first power supply input terminal to the control terminal of the driving sub-circuit; the first terminal of the driving sub-circuit is connected to the second power supply input terminal to receive the second power supply voltage; and the first power supply voltage and the second power supply voltage are configured to cause the driving sub-circuit to be in an on-bias state in the initialization phase.
Abstract:
An array substrate provided by an embodiment of the present invention may include a flexible substrate and an array layer formed on the flexible substrate. The array layer may includes signal transmission lines, which include a plurality of data lines and a plurality of gate lines intersected with each other on the flexible substrate to form a plurality of sub-pixel regions; and thin film transistors, each of which is provided in a corresponding sub-pixel region of the plurality of sub-pixel regions and connected to a corresponding data line and a corresponding gate line. An angle between at least a portion of the signal transmission lines and any one edge of the flexible substrate may not be substantially equal to 90°.
Abstract:
Provided is a peep prevention display, wherein a peep prevention film layer is provided on the light exit side of the peep prevention display, and the peep prevention film layer has a mesh structure; meshes of the mesh structure are arranged corresponding to sub-pixel units or pixel units of the display, and the peep prevention film layer comprises a P electrode lead layer, a P type semiconductor layer, an N type semiconductor layer and an N electrode lead layer. Since the peep prevention display has a small display angle of view, it can prevent peep by a person from side angle of view while providing image display for a user viewing from the front, so as to effectively protect personal privacy and business secret. In addition, the light blocked by a peep prevention film layer can be converted to electric energy, thus achieving an effect of self electricity generation.
Abstract:
The present invention provides a display substrate and a manufacturing method thereof, a touch panel comprising the display substrate, and a display device. The display substrate comprises: a first substrate; a thin film transistor, a first electrode and a second electrode formed on one side of the first substrate; and a black matrix and a color filter layer formed on the other side of the first substrate, wherein at least one of the black matrix and the color filter layer is made of conductive material, a display electric field is formed between the first electrode and the second electrode, and a touch-control electric field is formed between the first electrode and the black matrix and/or the color filter layer. The solution of the invention can improve accuracy of determination of location where touch occurs and display quality, and reduce thickness of the display substrate.