Abstract:
Embodiments of the present invention provide a light source structure for optical fiber display device and an optical fiber display device. The light source structure for optical fiber display device comprises a light source. The light source structure for optical fiber display device is of a hollow truncated cone structure, a upper surface, a side surface and a lower surface of the hollow truncated cone structure are constituted by the light source, a reflection cover and an optical fiber connection surface, respectively, a light emitting surface of the light source is disposed to face the optical fiber connection surface, a reflection surface of the reflection cover is provided inside the hollow truncated cone structure, and the optical fiber connection surface has an optical fiber connection region that corresponds to the position of the light source and has a same size as the light source.
Abstract:
Provided in the present disclosure are a light-emitting substrate and a display apparatus. The light-emitting substrate includes: a driving backplane; a plurality of light-emitting chips, arranged on the driving backplane in an array, where the light-emitting chip includes a buffer layer, an N-type semiconductor layer, a multi-quantum well layer, and a P-type semiconductor layer sequentially arranged on the driving backplane in a stacked manner; and a grating structure, on a side of the plurality of light-emitting chips facing away from the driving backplane, where the grating structure has a plurality of regions, and the regions are configured to transmit light of different wavelength bands.
Abstract:
A display panel, a touch control structure and a display device. The display panel includes a display structure layer and a touch control structure layer having a plurality of mesh pattern units in polygonal shapes composed of metal wires. The touch control structure layer includes a Boundary region, and each mesh pattern unit in the Boundary region is provided with a cut that disconnect the metal wires of the mesh pattern unit. The mesh pattern unit includes at least two parallel first sides. The cuts include consecutive cuts and the quantity of cuts in a set of consecutive cuts is less than or equal to three. The consecutive cuts are cuts provided on both the two sides of each mesh pattern unit of at least one mesh patterns units arranged continuously in a first direction and the first direction intersects the first side of each mesh pattern unit.
Abstract:
A display panel, a touch control structure and a display device are provided. The display panel includes a substrate, a display structure layer and a touch control structure layer. the touch control structure layer includes a bridge layer, an insulating layer and a touch control layer which are in a stacked arrangement, the touch control layer includes a plurality of first touch control electrodes and a plurality of first connecting parts arranged sequentially along a first extending direction and a plurality of second touch control electrodes arranged sequentially along a second extending direction, the plurality of first touch control electrodes and the plurality of first connecting parts are arranged alternately and connected in sequence, and the plurality of second touch control electrodes are arranged at intervals; the bridge layer includes connecting bridges connected with adjacent second touch control electrodes.
Abstract:
A spacer supportability evaluation method and device as well as a computer readable storage medium are provided. The method includes acquiring initial distribution images of spacers and corresponding support pads on a substrate, performing binary grayscaling processing to obtain distribution images of spacers and corresponding support pads, obtaining two binary matrices according to the distribution images, subjecting the two binary matrices to convolution in a spatial domain or to multiplication in a frequency domain to obtain an equivalent support matrix, calculating a number of elements in the equivalent support matrix whose values are a first value to obtain a number of supported pixels. The supportability of spacers is evaluated by acquiring parameters or design drawings of the spacers to calculate suitable size and positional arrangement of each spacer, improving the supportability of spacers and keeps the cell gap of the liquid crystal cell stable and uniform.
Abstract:
The present disclosure relates to a moire quantitative evaluation method. The method includes obtaining an image of a first pattern layer; obtaining coordinates of each of the first image units; according to the coordinates of each of the first image units and a thickness and a refractive index of a dielectric layer, determining coordinates of projection image units each of which corresponds to a corresponding one of the first image units along an oblique view light path; determining a pixel value of each of the projection image units according to pixel values of second image units in each of the surrounding regions to obtain an oblique view image; superimposing the image of the first pattern layer and the oblique view image to obtain a first superimposed image; converting the first superimposed image into a moire image; and performing a moire quantitative evaluation according to the moire image.
Abstract:
The present invention provides a display panel and a manufacturing method thereof and a display device, the display panel comprises an array substrate and an opposite substrate, the display panel further comprises: an electrochromic structure provided on the array substrate or the opposite substrate, which is used to absorb leakage light of the display panel when the display panel is in a dark state. When the display panel is in a bright state, the electrochromic structure exhibits a transparent state, and when the display panel is in a dark state, the electrochromic structure exhibits a coloring state, the electrochromic structure exhibiting the coloring state may absorb light, so that the leakage light of the display panel in the dark state may be reduced to a largest extent, thus the smallest brightness of the display panel is decreased, therefore, the contrast of the display panel is effectively increased.
Abstract:
The invention relates to the field of display technology, and particularly to a surface light source, a backlight module and a display device. The surface light source of the invention comprises at least one optical fiber and at least one light source, wherein the at least one light source is provided at one end of the at least one optical fiber one to one, the at least one optical fiber each is provided with a plurality of light outgoing windows along its length direction, a light beam emitted from each light source propagates in a corresponding optical fiber, and outgoes from the optical fiber through the plurality of light outgoing windows. The surface light source and the backlight module adopting the surface light source have advantages of wide gamut, high efficiency and high light focusing effect. The display device adopting the backlight module has better display effect.
Abstract:
The present invention provides a liquid crystal panel and a manufacturing method thereof, and a display apparatus comprising the liquid crystal panel, which relates to the field of display technology, and can avoid the problem that the sealant is separated from the first substrate and/or the second substrate while the liquid crystal panel is bent. The liquid crystal panel of the present invention comprises a first substrate and a second substrate, the first substrate and the second substrate are aligned with each other to form a liquid crystal cell, and the liquid crystal cell is sealed with sealant, wherein, at least one convex structure is provided in a region which corresponds to position of the sealant on the first substrate and/or the second substrate.
Abstract:
A light-emitting diode includes a base and light-emitting devices including a first light-emitting device, a second light-emitting device, and a third light-emitting device. The area of the first light-emitting device, the area of the second light-emitting device, and the area of the third light-emitting device decrease in order. Each light-emitting device includes a light-emitting stacked layer. In two adjacent light-emitting devices, at least one light-emitting device further includes a first reflective layer provided between a light-emitting stacked layer of the light-emitting device to which the first reflective layer belongs and another light-emitting device. The first reflective layer covers a first region and exposes at least a portion of a second region, the first region being a region where the two adjacent light-emitting devices overlap with each other, and the second region being a region where the two adjacent light-emitting devices are non-overlapping with each other.