Abstract:
An array substrate, a display panel and a method of manufacturing a thin film transistor (TFT) are provided. The array substrate includes a base substrate and a thin film transistor (TFT) formed on the base substrate, and the TFT includes a gate electrode, a gate insulating layer, an active layer, source/drain electrodes and an interlayer insulating layer. The source/drain electrodes include a first electrode and a second electrode, and the interlayer insulating layer is located between the first electrode and the second electrode. The gate electrode, the gate insulating layer and the active layer are arranged sequentially in a direction perpendicular to a thickness direction of the array substrate, and the first electrode, the interlayer insulating layer and the second electrode are arranged sequentially in the thickness direction of the array substrate.
Abstract:
A driving circuit, a driving method, a driving module and a display device are provided. The driving circuit includes a driving signal generation circuit, a gating circuit, an output control circuit, an output circuit, a voltage control circuit and a third control node control circuit. The third control node control circuit is electrically connected to the first node and the third control node respectively, and is configured to control the potential of the third control node according to the potential of the first node.
Abstract:
The present disclosure provides a driving circuitry, a driving method, a driving module, and a display device. The driving circuitry includes a driving signal generation circuitry, a gating circuitry, an output control circuitry and an output circuitry. The driving signal generation circuitry is configured to perform a shifting operation on an (N−1)th-level driving signal to obtain an Nth-level driving signal. The gating circuitry is configured to write a gating input signal into a first node under the control of a gating control signal. The output control circuitry is configured to perform an NAND operation on the Nth-level driving signal and a potential at a second end of the output control circuitry to obtain a first output signal. The output circuitry is configured to perform phase inversion on the first output signal to obtain and provide an output driving signal through an output driving end, where N is a positive integer.
Abstract:
A display substrate, a working method thereof, and a display device. The display substrate includes K pixel rows and K is a positive integer greater than 1; at least one pixel row includes an initial signal line, a scan signal line, and a plurality of sub-pixels disposed sequentially along an extension direction of the initial signal line and the scan signal line; the initial signal line includes a third initial signal line, the scan signal line includes a second scan signal line, at least one sub-pixel includes a pixel drive circuit, the pixel drive circuit at least includes a third transistor as a drive transistor and an eighth transistor as an initialization transistor; in at least a pixel row, the eighth transistor is connected with the third initial signal line, the second scan signal line, and a second electrode of the drive transistor.
Abstract:
A display substrate and a display apparatus are provided. The display substrate includes sub-pixels, a pixel defining pattern, and a defining structure. The sub-pixel includes a light-emitting functional layer. The pixel defining pattern includes first openings and second openings, a portion in the defining structure exposed by the second opening is configured to isolate the light-emitting functional layer. The sub-pixels include a first sub-pixel and a second sub-pixel, a turn-on voltage of the first sub-pixel is higher than that of the second sub-pixel; the defining structure includes a first defining structure surrounding the second sub-pixel and a second defining structure surrounding the second sub-pixel; the first defining structure is not exposed by the second opening; or a proportion of the first defining structure exposed by the second opening is less than a proportion of the second defining structure exposed by the second opening.
Abstract:
A display apparatus includes a display panel, a touch layer, and a flexible printed circuit (FPC) including a main FPC and a bridge FPC. A third soldering region and a fourth soldering region of the bridge FPC are respectively soldered to a first soldering region and a second soldering region of the main FPC. Ends of each first touch connection line are electrically connected to a touch chip and a first touch lead. Ends of each second touch connection line are electrically connected to a pad on the second soldering region and a second touch lead. Ends of each third touch connection line are electrically connected to a pad on the first soldering region and the touch chip. Ends of each touch transfer line are electrically connected to a pad on the third soldering region and a pad on the fourth soldering region.
Abstract:
A display panel, including an active area and a peripheral area, which is located outside of the active area, wherein the active area comprises a base substrate, and a display structure layer and a touch structure layer sequentially arranged on the base substrate; the peripheral area includes an isolation dam, a first ground trace and a second ground trace arranged on the base substrate; and the first ground trace is located at a side of the isolation dam close to the active area, and the second ground trace is located at a side of the isolation dam away from the active area.
Abstract:
The present disclosure provides a display apparatus, a display panel of which includes a panel chip; a second bonding region of a main circuit board is provided with second display terminals coupled with first display terminals and second touch control terminals coupled with first touch control terminals; each of segment touch control lines includes a first segment coupled between one second touch control terminal and one main connector in a first region, and a second segment coupled between a touch control chip and one main connector in a second region; a third region and a fourth region of a jumper connection circuit board are bonded with the first region and the second region respectively; the segment touch control lines are in one-to-one correspondence with jumper connection lines, each jumper connection line is coupled between one jumper connector in the third region and one jumper connector in the fourth region.
Abstract:
A pixel circuit and a driving method thereof, and a display device are provided. The pixel circuit includes a driving sub-circuit, a data writing sub-circuit, a first light-emitting control sub-circuit, a second light-emitting control sub-circuit, a compensation sub-circuit, and a first reset sub-circuit, and is configured to generate a driving current to control a light-emitting element to emit light, the first reset sub-circuit comprises a first transistor, the compensation sub-circuit comprises a second transistor, the first transistor and the second transistor are both polysilicon oxide thin film transistors, and an active layer type of the first transistor and an active layer type of the second transistor are different from an active layer type of a transistor comprised in at least one selected from a group consisting of the driving sub-circuit, the data writing sub-circuit, the first light-emitting control sub-circuit, and the second light-emitting control sub-circuit.
Abstract:
A display device and a manufacturing method thereof are provided. The display device includes a display panel and a flexible circuit board electrically connected with the display panel. The flexible circuit board includes a first circuit board, a second circuit board and a conductive portion; the first circuit board includes a first substrate, and a main contact pad, a first wire and a second wire provided on the first substrate; the second circuit board includes a second substrate, a relay contact pad and a third wire provided on the second substrate; and the conductive portion is configured for electrically connecting the main contact pad and the relay contact pad.