Abstract:
The present application provides a pixel circuit, a display panel, and a temperature compensation method for a display panel. The display panel includes a plurality of pixel units. At least one of the plurality of pixel units includes: a display layer comprising a light emitting element; and a thermoelectric conversion layer comprising a thermoelectric element having a first terminal and a second terminal, wherein the first terminal is disposed adjacent to the light emitting element and in thermal contact with the light emitting element, and the second terminal is disposed away from the light emitting element. The thermoelectric element has a first signal terminal and a second signal terminal, and is configured to generate a temperature difference voltage signal between the first signal terminal and the second signal terminal according to a temperature difference between the first terminal and the second terminal.
Abstract:
A detection panel and a detection device are provided. The detection panel includes: a base substrate, a photoelectric conversion layer and a first insulating layer which are sequentially stacked on the base substrate; wherein the detection panel further comprises a plurality of interdigital electrodes located on a surface of a side of the first insulating layer away from the base substrate.
Abstract:
An embodiment of the present disclosure provides an actively driven organic light-emitting display apparatus to eliminate a defect in which the current flowing through the lighting device in the actively driven organic light-emitting display apparatus is affected by the instable current caused by the instable threshold voltage of the drive transistor, so that the current flowing through the lighting device is accurate and make the brightness of the whole actively driven organic light-emitting display apparatus be even. The display apparatus comprises a light emitting device, a light emitting device drive unit, a first switch unit, a second switch unit, a current control unit and a resistor which constitute a feedback loop. An input terminal of the current control unit is input a data signal to control that the current of the light emitting device is only associated with the resistor, voltage of the input data signal and the supply voltage.
Abstract:
The present invention provides a pixel circuit, a display substrate and a display panel. The pixel circuit comprises a power supply terminal; a control thin film transistor; a drive thin film transistor; a storage capacitor; a light-emitting device, the pixel circuit further comprises a voltage division control module and a voltage division capacitor, the voltage division control module is used for charging the storage capacitor in the pre-charging phase of the pixel circuit, so that voltage of the gate of the drive thin film transistor becomes a reference voltage, and the voltage division control module is capable of outputting a low level to the second end of the storage capacitor in the compensation phase of the pixel circuit. A first end of the voltage division capacitor is connected to the first end of the storage capacitor, a second end thereof is connected to the cathode of the light-emitting device.
Abstract:
A scan driving circuit and a driving method thereof, an array substrate, and a display apparatus are disclosed. The scan driving circuit comprises: a first shift register (11) connected to one group of clock signals (CLKA) having a first clock cycle, and configured to output a first scanning signal (GA) progressively; a second shift register (12) connected to another group of clock signals (CLKB) having a second clock cycle, and configured to output a second scanning signal (GB) progressively; and a logic arithmetic device (13) connected to a first clock signal (CLK1) having a third clock cycle, connected to the first shift register (11) and the second shift register (12), and configured to output compensation signals (SC) of multiple rows; the compensation signal (SC) of any row has a wave shape the same as the first clock signal (CLK1) when a second scanning signal (GB) of a present row is at a first level, and has a wave shape the same as a first scanning signal (GA) of the present row when the second scanning signal (GB) of the present row is at a second level; and the third clock cycle is smaller than the second clock cycle. The scan driving circuit can be implemented by adding an appropriate circuit structure on the basis of the conventional GOA circuit, without manufacturing a driving chip on the external circuit board, so that the manufacturing process can be simplified, the process cost of products can be reduced, and integration level of the OLED panel can be raised.
Abstract:
The gate driver circuit is connected to a row of pixel unit, each includes a pixel driving module and a light-emitting device connected to each other, the pixel driving module including a driving transistor, a driving module and a compensating module, the compensating module is connected to a first row scanning signal, and the driving module is connected to a second row scanning signal and a driving voltage. The gate driver circuit further includes a row pixel controlling unit configured to provide the first row scanning signal to the compensating module and provide the second row scanning signal and the driving voltage to the driving module, so as to control the compensating module to compensate for a threshold voltage of the driving transistor and control the driving module to drive the light-emitting device.
Abstract:
The gate driving circuit according to the present disclosure may be connected to a row pixel unit which includes a row pixel driving module and a light emitting element connected to each other, the row pixel driving module including a driving transistor, a driving module and a compensation module, the compensation module being connected with a gate scanning signal and the driving module being connected with a driving level. The gate driving circuit may further include a row pixel control unit, which is configured to provide the gate scanning signal to the compensation module and provide the driving level to the driving module, so as to control the compensation module to compensate for a threshold voltage of the driving transistor and control the driving module to drive the light emitting element.
Abstract:
A ramp signal generating circuit and ramp signal generator, an array substrate and a display apparatus. The ramp signal generating circuit comprises a first shift register (11), a second shift register possessing a bidirectional scanning function (12), a voltage decreasing unit (13) and a sampling unit (14); the voltage decreasing unit (13) is connected to a power supply input terminal and a ground terminal and is configured to continuously decrease a voltage inputted from the power supply input terminal stage by stage; the first shift register (11) is connected to the voltage decreasing unit (13) and is configured to control the voltage decreasing unit (13) to output voltages which are decreased continuously stage by stage; the sampling unit (14) has an output terminal and is connected to the voltage decreasing unit (13); the second shift register (12) is connected to the sampling unit (14) and is configured to control, through bidirectional scanning, the sampling unit (13) to sample and output the voltages which are decreased continuously stage by stage by the voltage decreasing unit (13). Such ramp signal generating circuit is capable of reducing area of the ramp signal generating circuit and improving linearity of ramp signal.
Abstract:
A shift register, comprising a plurality of shift register sub-units connected in cascade, each of the plurality of shift register sub-units comprising first to third TFTs, an eleventh TFT, a first capacitor and a first reset control module for controlling the second TFT to be turned on or off. Besides the shift register sub-unit at a first stage, for each of the shift register sub-units at other stages, the second TFT gate control terminal thereof is connected to the third TFT gate control terminal of the shift register sub-unit at a previous stage. Accordingly, a gate driving circuit comprising the shift register and a display comprising the gate driving circuit are provided. Compared with the prior art, reliability of the shift register is highly improved and area occupied by the shift register is smaller.
Abstract:
A sensing circuit for external compensation, a sensing method thereof and a display apparatus, the sensing circuit for external compensation comprises a differential amplifier (9), a first capacitor (4), a second capacitor (8) and an output voltage controlling circuit (10) for the first capacitor; a negative input terminal of the differential amplifier (9) is connected with a display panel (1), a positive input terminal thereof is connected with a reference voltage, and an output terminal thereof is connected with an output terminal of the output voltage controlling circuit (10) for the first capacitor; the output voltage controlling circuit (10) for the first capacitor is used for enabling an output voltage of the first capacitor (4) in a subsequent current integral stage to vary based on the reference voltage. The sensing circuit for external compensation, the sensing method thereof and the display apparatus according to embodiments of the present disclosure can store by using the capacitor an offset voltage of the amplifier in an initial stage to eliminate the differences in the voltage outputs caused by the offsets of the amplifiers among different channels and enhance the accuracy of the voltage output.