Abstract:
A driver port that provides selectable output currents based on connections thereto, and a driver including the same, is provided. A plurality of shunt resistors are connected in series between a negative output of a driver and a ground. A driver port having a plurality of connection points is provided, each respective connection point connected to a different connection between two of the plurality of shunt resistors. A load including one or more solid state light sources is capable of being connected between one of the connection points of the driver port and a positive output of the driver.
Abstract:
A driver port that provides selectable output currents based on connections thereto, and a driver including the same, is provided. A plurality of shunt resistors are connected in series between a negative output of a driver and a ground. A driver port having a plurality of connection points is provided, each respective connection point connected to a different connection between two of the plurality of shunt resistors. A load including one or more solid state light sources is capable of being connected between one of the connection points of the driver port and a positive output of the driver.
Abstract:
A bi-level current configurable driver is provided. The driver includes a feedback circuit, a driver circuit providing a driver signal to a half bridge inverter, and a step-dim interface coupled to a first alternating current input line, a second alternating current input line, and a neutral line, providing voltage to the driver circuit. The driver also includes a first feedforward circuit coupled to the step-dim interface, where the first feedforward circuit receives a first signal from the step-dim interface based on the states of the first alternating current input line, the second alternating current input line, and the neutral line. In a first state, the driver provides full current to a load, and in a second state, the driver provides less than full current to the load.
Abstract:
A ballast for energizing a lamp at a lighting level selected from a plurality of lamp lighting levels. The ballast includes a buck converter circuit configured to receive a DC voltage signal having a substantially constant magnitude. The buck converter circuit has a duty cycle for generating a lamp voltage output signal from the DC voltage signal. The lamp voltage output signal has a magnitude that is varied by the duty cycle to energize the lamp at the plurality of lamp lighting levels. A controller is configured to receive a dim input signal indicative of the selected lamp lighting level and to provide a control signal to the buck converter circuit as a function of the dim input signal. The control signal indicates a particular duty cycle corresponding to a lamp voltage output signal having a magnitude for energizing the lamp at the selected lamp lighting level.
Abstract:
A no load detection and shutdown circuit in an isolated driver is provided. A no load condition is detected by primary side evaluation of a reflected voltage. If a determination is made that a no load condition is present, the no load detection circuit signals a half bridge driver of the driver to cease oscillations, shutting down the driver.
Abstract:
A ballast to energize a lamp is provided. The ballast comprises a buck converter connected to an inverter via a switching component. The buck converter includes a transistor, a capacitor, a diode, and an inductor. The switching component has a predetermined breakover voltage value and is configured to provide a start up signal to the inverter when voltage at the switching component increases to the predetermined breakover voltage value. A control circuit is configured to monitor the voltage at the switching component while the voltage at the switching component increases to the predetermined breakover voltage, and is configured to generate a gate drive pulse at a gate terminal of the transistor when the voltage at the switching component reaches a predetermined voltage that is less than the breakover voltage of the switching component.
Abstract:
A DC-DC flyback converter includes a transformer and a switching component connected between the transformer and a ground. The switching component controls current flow through the primary winding of the transformer. A snubber circuit is connected between ground and the connection between the transformer and the switching component. The snubber circuit reduces transient voltage spikes across the switching component. A capacitive component of the snubber circuit provides stability for a primary side auxiliary output voltage while maintaining power factor and THD performance.
Abstract:
Techniques to manage communications resources for a mobile device are described. An apparatus may comprise a mobile computing device having a radio arranged to communicate information over a wireless link, a link classifier arranged to generate a class parameter for the wireless link based on signal quality measurements of the wireless link, and a data service manager arranged to receive a data service request from an application, determine whether the application may communicate information over the wireless link based on the class parameter for the wireless link, and generate a control directive for the application granting or denying the data service request. Other embodiments are described and claimed.
Abstract:
A ballast comprises an inverter circuit for providing an oscillating current signal for energizing the at least one lamp. The inverter circuit comprises a first switching component and a second switching component each having a collector terminal, a base terminal, and an emitter terminal. And, each switching component is configured for alternately operating between a conductive state and a non-conductive state. A first collector-emitter circuit is connected between the collector terminal and the emitter terminal of the first switching component, wherein the first collector-emitter circuit has a first resistance of zero or more Ohms. A second collector-emitter circuit is connected between the collector terminal and the emitter terminal of the second switching component, wherein the second collector-emitter circuit has a second resistance of zero or more Ohms and the first resistance and the second resistance are unequal.
Abstract:
Embodiments of the current invention describe a high performance combinatorial method and apparatus for the combinatorial development of coatings by a dip-coating process. The dip-coating process may be used for multiple applications, including forming coatings from varied sol-gel formulations, coating substrates uniformly with particles to combinatorially test particle removal formulations, and the dipping of substrates into texturing formulations to combinatorially develop the texturing formulations.