Abstract:
A signal processing method to determine whether or not a detected key-phrase is spoken by a wearer of a headphone. The method receives an accelerometer signal from an accelerometer in a headphone and receives a microphone signal from at least one microphone in the headphone. The method detects a key-phrase using the microphone signal and generates a voice activity detection (VAD) signal based on the accelerometer signal. The method determines whether the VAD signal indicates that the detected key-phrase is spoken by a wearer of the headphone. Responsive to determining that the VAD signal indicates that the detected key-phrase is spoken by the wearer of the headphone, triggering a virtual personal assistant (VPA).
Abstract:
An earphone has a housing and a corresponding user-contact surface configured to urge against a user's anatomy. The housing defines an acoustic chamber and an acoustic port opening from the acoustic chamber. The user-contact surface is complementarily configured relative to the user's anatomy. When the earphone is donned, the user-contact surface forms an acoustic seal between the user-contact surface and the user's anatomy, acoustically coupling the acoustic chamber with the user's ear canal. An acoustic driver is positioned in the housing and acoustically coupled with the acoustic chamber. A microphone transducer acoustically couples with the acoustic port. A processing component is configured to detect a presence or an absence of anti-resonance in a spectral envelope observed by the microphone transducer.
Abstract:
An electronic device that can be worn by a user can include a processing unit and one or more sensors operatively connected to the processing unit. The processing unit can be adapted to determine an installation position of the electronic device based on one or more signals received from at least one sensor.
Abstract:
An automatic speech recognition (ASR) triggering system, and a method of providing an ASR trigger signal, is described. The ASR triggering system can include a microphone to generate an acoustic signal representing an acoustic vibration and an accelerometer worn in an ear canal of a user to generate a non-acoustic signal representing a bone conduction vibration. A processor of the ASR triggering system can receive an acoustic trigger signal based on the acoustic signal and a non-acoustic trigger signal based on the non-acoustic signal, and combine the trigger signals to gate an ASR trigger signal. For example, the ASR trigger signal may be provided to an ASR server only when the trigger signals are simultaneously asserted. Other embodiments are also described and claimed.
Abstract:
A wearable device configured to acquire and process electrocardiographic measurements, detect lead inversion and correct the acquired measurements for lead inversion is provided. In one example, the wearable device can detect lead inversion by first assessing whether the P-wave of a given electrocardiographic measurement has a negative amplitude, and if the P-wave is found to be negative, the device can determine if the magnitude of the R-wave is smaller than the maximum of the magnitudes of the S-wave and the Q-wave. In another example, the device can be put through an enrollment procedure in which electrocardiographic measurements are taken with the device being worn at known locations on the body. Once the enrollment procedure is completed, when the device is being used, any electrocardiographic results obtained can be compared against the measurements taken during the enrollment phase, and the location of the device on the body can be determined.
Abstract:
Digital signal processing techniques for automatically reducing audible noise from a sound recording that contains speech. A noise suppression system uses two types of noise estimators, including a more aggressive one and less aggressive one. Decisions are made on how to select or combine their outputs into a usable noise estimate in a different speech and noise conditions. A 2-channel noise estimator is described. Other embodiments are also described and claimed.
Abstract:
An electronic device that can be worn on a limb of a user can include a processing device and one or more position sensing devices operatively connected to the processing device. The processing device can be adapted to determine which limb of the user is wearing the electronic device based on one or more signals received from at least one position sensing device.
Abstract:
Systems, methods, devices and non-transitory, computer-readable storage mediums are disclosed for location-tracking wireless devices. In an embodiment, a method performed by an electronic device comprises: playing, or initiating the playing of, a sound through a loudspeaker of an accessory device via a communication link. The sound is played at a specified frequency that utilizes a frequency response of the loudspeaker (or loudspeaker plus speaker enclosure). The sound is received through two or more microphones of the electronic device and filtered by one or more filters. The one or more filters are configured to pass the sound at or around the specified frequency and to reduce masking of the sound by ambient noise. The filtered sound is associated with direction data generated from sensor data provided by one or more inertial sensors of the electronic device. In another embodiment, the specified frequency is higher than the maximum human hearing range.
Abstract:
An electronic device that can be worn on a limb of a user can include a processing device and one or more position sensing devices operatively connected to the processing device. The processing device can be adapted to determine which limb of the user is wearing the electronic device based on one or more signals received from at least one position sensing device.
Abstract:
Method of wind and noise reduction for headphones starts by receiving acoustic signals from first external microphone included on the outside of earcup's housing. Acoustic signals are received from internal microphone included inside earcup's housing. ANC downlink corrector processes downlink signal to generate echo estimate of speaker signal. First summator removes echo estimate of speaker signal from acoustic signals from internal microphone to generate corrected internal microphone signal. Spectral combiner performs spectral mixing of corrected internal microphone signal with acoustic signals from first external microphone to generate mixed signal. Lower frequency portion of mixed signal includes corresponding lower frequency portion of corrected internal microphone signal, and higher frequency portion of mixed signal includes corresponding higher frequency portion of acoustic signals from first external microphone. Other embodiments are also described.