Abstract:
Methods and apparatus for providing useful data in association with a high-priority call such as an emergency call. In one embodiment, the data comprises a data (e.g., an MSD or FSD) embedded within one or more real-time protocol packets such as RTP Control Protocol (RTCP) packets, that are interspersed within the voice or user data stream (carried in e.g., RTP packets) of an emergency call. Apparatus and methods are described for transmitting the data portion reliably from the initiating terminal (e.g., an in-vehicle system) to a Public Safety Answering Point (PSAP), by using the same transport connection as the user data.
Abstract:
Methods and apparatus for providing a presence service for contact management functions such as user address books. The presence service, in an exemplary embodiment, assembles contact entries into abstract groupings and defines event packages specified by the user that enable the user to be notified about presence information dynamically. For example, a subscribed user may receive presence service information for all entries in the users address book that are in close geographical proximity to the subscribed user. In one variant, the storage and calculation of presence information is performed at a centralized location, thereby sparing the user's device from utilizing unnecessary calculation resources and avoiding unnecessary network bandwidth utilization in order to receive presence information of interest. User device-based variants are also disclosed. Business methods utilizing the aforementioned presence service offerings are also provided.
Abstract:
Methods and apparatus that provide user access control within wireless networks such as those having both fixed and portable nodes. In one embodiment, the network comprises a 3G cellular network or Interworking WLAN (iWLAN), and the portable nodes comprise Home Node B (HNB) base stations. The HNB is configured to authenticate new users, and provide network access while still maintaining user privacy. The portable nodes also may operate in a number of different operating modes which provide different functional control over user access. In one variant, an easy-to-use owner-assigned ID based access control mechanism with a reliable unambiguous user ID is utilized. Methods for providing access control across differing network architectures and protocols, such the aforementioned iWLAN, and business methods, are also described.
Abstract:
Methods and apparatus that enable a wireless network system to dynamically change between full-duplex FDD operation and half-duplex FDD operation in order to take advantage of operational aspects of both modes. In one embodiment, an alternative duplex mode of operation is disclosed (semi-static half duplex FDD operation) that enables coordination between the client device (e.g., UMTS UE) and the base station in order to centralize control of radio resource control (RRC) to the base station. The disclosed methods and apparatus may also advantageously incorporate hybrid ARQ (HARQ) or comparable timing requirements into their operation.
Abstract:
Methods and apparatus that provide user access control within wireless networks such as those having both fixed and portable nodes. In one embodiment, the network comprises a 3G cellular network or Interworking WLAN (iWLAN), and the portable nodes comprise Home Node B (HNB) base stations. The HNB is configured to authenticate new users, and provide network access while still maintaining user privacy. The portable nodes also may operate in a number of different operating modes which provide different functional control over user access. In one variant, an easy-to-use owner-assigned ID based access control mechanism with a reliable unambiguous user ID is utilized. Methods for providing access control across differing network architectures and protocols, such the aforementioned iWLAN, and business methods, are also described.
Abstract:
Methods and apparatus that provide user access control within wireless networks such as those having both fixed and portable nodes. In one embodiment, the network comprises a 3G cellular network or Interworking WLAN (iWLAN), and the portable nodes comprise Home Node B (HNB) base stations. The HNB is configured to authenticate new users, and provide network access while still maintaining user privacy. The portable nodes also may operate in a number of different operating modes which provide different functional control over user access. In one variant, an easy-to-use owner-assigned ID based access control mechanism with a reliable unambiguous user ID is utilized. Methods for providing access control across differing network architectures and protocols, such the aforementioned iWLAN, and business methods, are also described.
Abstract:
Methods and apparatus that seek to increase the diversity seen in wireless communication systems by intelligently implementing a joint multi-dimensional permutation approach. In an exemplary embodiment, this is accomplished by combining the permutation of various transmitter antennas, various data streams (for example, in a MIMO configuration) and various constellation-bit mappings into a coherent multi-dimensional permutation scheme. Subsequent retransmissions in combination with an initial transmission are utilized to obtain substantial signal flattening at a receiver which increases the likelihood that retransmissions that follow detected errors will successfully convey the transmitted data to the receiver. Both open and closed-loop approaches are contemplated which take advantage of the multi-dimensional permutation schemes. In addition, embodiments utilized in the context of retransmission mechanisms such as HARQ are also contemplated.
Abstract:
Methods and apparatus for providing enhanced access options for wireless access points (e.g., cellular femtocells). These access options in one embodiment include various grades or levels of private and public access to available femtocell services. Each service may be separately assigned a various access type, such that a femtocell may service multiple users both within the “closed” group authorized by the femtocell white list, and non-members. In one variant, a femtocell broadcasts enhanced system information to all terminals (regardless of member/non-member status) such that a non-CSG (Closed Subscriber Group) member terminal or UE is capable of obtaining partial service access within the femtocell. Broadcast multimedia or other services can be delivered to both CSG members and non-members, advantageously without having to establish a dedicated connection for the non-member users.
Abstract:
Methods and apparatus that seek to increase the diversity seen in wireless communication systems by intelligently implementing a joint multi-dimensional permutation approach. In an exemplary embodiment, this is accomplished by combining the permutation of various transmitter antennas, various data streams (for example, in a MIMO configuration) and various constellation-bit mappings into a coherent multi-dimensional permutation scheme. Subsequent retransmissions in combination with an initial transmission are utilized to obtain substantial signal flattening at a receiver which increases the likelihood that retransmissions that follow detected errors will successfully convey the transmitted data to the receiver. Both open and closed-loop approaches are contemplated which take advantage of the multi-dimensional permutation schemes. In addition, embodiments utilized in the context of retransmission mechanisms such as HARQ are also contemplated.
Abstract:
Methods and apparatus for providing enhanced access options for wireless access points (e.g., cellular femtocells). These access options in one embodiment include various grades or levels of private and public access to available femtocell services. Each service may be separately assigned a various access type, such that a femtocell may service multiple users both within the “closed” group authorized by the femtocell white list, and non-members. In one variant, a femtocell broadcasts enhanced system information to all terminals (regardless of member/non-member status) such that a non-CSG (Closed Subscriber Group) member terminal or UE is capable of obtaining partial service access within the femtocell. Broadcast multimedia or other services can be delivered to both CSG members and non-members, advantageously without having to establish a dedicated connection for the non-member users.