Abstract:
A plug connector with external contacts is provided. The connector has one pair of contacts for transmitting data and one pair of contacts for receiving data. All data transmitted and received using the plug connector is serialized/de-serialized to enable data transmission at a very high rate. A corresponding receptacle connector has configurable contacts that are configured based on the orientation of the plug connector with respect to the receptacle connector. The receptacle connector may be included in a host device and has associated circuitry to detect orientation of the plug connector and to configure the contacts of the receptacle connector.
Abstract:
Techniques for detecting connection of a host device by an accessory device are provided. The accessory device outputs a pulsed voltage/current on its power contact and measure the voltage at the power contact in response to the pulsed voltage/current. If the measured voltage reaches a certain value at or after the expiration of a predetermined time, then the accessory concludes that a host device is connected to it.
Abstract:
Techniques for detecting mating and un-mating of a first connector with a second connector include providing a pulsed voltage signal at a contact of the second connector and measuring a rate of rise of voltage at the contact. If the measured voltage at the contact exceeds a threshold voltage during the time the pulsed voltage signal is applied, then it is concluded that the first connector is not present and not mated with the second connector. If the measured voltage is lower than or equal to the threshold voltage during the time of application of the voltage pulse, it is concluded that the first connector is present and mated with the second connector.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
Simplified interfaces for charging and communication between accessories and docking stations. One example may provide an interface for charging and communication between an accessory and docking station where data and a charging voltage are provided over the same pins. An accessory may determine that it is in a powered docking station by receiving a charging voltage. The accessory may determine that it is in an unpowered docking station by providing a voltage to the unpowered docking station, where the unpowered docking station uses the voltage to power an oscillator. The oscillator signal may be received by the accessory, which may use the presence of the signal to determine that it is in an unpowered docking station.
Abstract:
An electronic device such as a pair of headphones may be provided with left and right speakers for playing audio to a user. Control circuitry in the electronic device may play audio through the speakers in an unreversed configuration in which left channel audio is played through a first of the speakers that is adjacent to a left ear of the user and right channel audio is played through a second of the speakers that is adjacent to a right ear of the user or a reversed configuration in which these channel assignments are reversed. The headphones may have ear cups that house the speakers. Capacitive touch sensors, force sensors, and other sensors on the ear cups may measure ear shapes and finger grip positions on the ear cups to determine whether to operate in the unreversed or reversed configuration. Sensors may gather gestures and other user touch input.
Abstract:
An electronic device such as a pair of headphones may be provided with left and right speakers for playing audio to a user. Control circuitry in the electronic device may play audio through the speakers in an unreversed configuration in which left channel audio is played through a first of the speakers that is adjacent to a left ear of the user and right channel audio is played through a second of the speakers that is adjacent to a right ear of the user or a reversed configuration in which these channel assignments are reversed. A grip sensor may be used to distinguish between the user's left hand and the user's right hand. A motion sensor may detect movement as the headphones are placed on the user's head or on someone else's head. Control circuitry may use grip information and motion information to determine left and right channel assignments.
Abstract:
An electronic device such as a pair of headphones may be provided with left and right speakers for playing audio to a user. Control circuitry in the electronic device may play audio through the speakers in an unreversed configuration in which left channel audio is played through a first of the speakers that is adjacent to a left ear of the user and right channel audio is played through a second of the speakers that is adjacent to a right ear of the user or a reversed configuration in which these channel assignments are reversed. A grip sensor may be used to distinguish between the user's left hand and the user's right hand. A motion sensor may detect movement as the headphones are placed on the user's head or on someone else's head. Control circuitry may use grip information and motion information to determine left and right channel assignments.
Abstract:
A case for a wireless electronic listening device (e.g., a pair of wireless earbuds) is configured to house a pair of wireless earbuds and charge the earbuds when they are in the case. The case is further configured to receive media received by the wireless earbuds and transmit the media to a non-wireless output device connected to the case. The case may further include its own wireless radio that can wirelessly communicate audio to the wireless earbuds when the earbuds are not in the case. The case may further include an input port to receive an audio signal from a non-wireless source and may be configured to wirelessly transmit the audio received from the source to the wireless earbuds.
Abstract:
A stackable connector interface with magnetic retention for electronic devices and accessories can allow power and data to be transferred between one or more stacked connectors. Each interconnected stackable connector includes one or more magnetic elements, which magnetic elements have poles arranged to facilitate mating with other stackable connectors. The magnetic elements provide a magnetic retention force that holds mated connectors in contact with each other. In some embodiments, the connectors include connection detection circuitry for determining whether the connectors are mated with other connectors, thereby allowing the connectors to prevent live contacts from being exposed at an unmated surface of the connectors. In some embodiments, routing circuitry is included to determine how signals should be transferred between the interconnected stackable connectors and/or corresponding devices.