Abstract:
Systems, methods, devices and computer-readable storage mediums are disclosed for device state estimation with body-fixed assumption. In some implementations, a method comprises: determining, by a device, a rotational velocity of a user of the device based on a sensor signal; determining, by the device, user speed; determining, by the device, user acceleration based on the user speed and the rotational velocity of the user; and updating a user state estimator based on the user acceleration.
Abstract:
Systems, methods, and computer program products for determining a location from non-line-of-sight (NLOS) signals are described. A processor can determine that multipath interferences of a signal reaching a receiver through different paths that are close in lengths may be mistakenly interpreted as additional time shift, (e.g., additional time delay or, in some cases, time advance) of the signal in calculating a timing of the signal. The processor can determine the possible differences between path lengths and then determine an amount of the additional time shift. The processor can determine a shift correction to remove effects caused by the additional time delay from the timing calculation.
Abstract:
Systems, methods and computer-readable storage mediums are disclosed for a pedometer with lag correction. In some implementations, a method comprises: determining, by a first pedometer of an electronic device, a first step count based on sensor data provided by a motion sensor of the electronic device; determining, by a second pedometer of the electronic device, a second step count based on a window of the sensor data; responsive to determining that a step was detected by the second pedometer, determining a third step count based on the window of sensor data; and determining a corrected step count based on the third step count.
Abstract:
Methods, systems and computer program products for radionavigation for swimmers are described. A mobile device configured to estimate a location using radio frequency signals can estimate a position of the swimmer when the mobile device is worn on a limb of the swimmer and periodically submerged. The mobile device can supply auxiliary information to a radionavigation subsystem to correct a navigation solution affected by limb motion of the swimmer and affected by the periodic submersion of the mobile device.
Abstract:
Methods, systems and computer program products for determining and filtering potential outliers in RF signals used in radionavigation are described. A radionavigation subsystem of a mobile device can determine a first location estimate of the mobile device. The mobile device can determine a free direction from the first location estimate. The free direction can be a direction along which RF signals may cause greater position errors than RF signals from other directions may cause. The mobile device can determine a potential outlier among the received RF signals, the potential outlier being an RF signal from a signal source in the free direction. The mobile device can indicate to the radionavigation subsystem that a weight of the potential outlier shall be reduced when determining a second location estimate of the mobile device using the RF signals.
Abstract:
Systems, methods and computer-readable storage mediums are disclosed for a pedometer with lag correction. In some implementations, a method comprises: determining, by a first pedometer of an electronic device, a first step count based on sensor data provided by a motion sensor of the electronic device; determining, by a second pedometer of the electronic device, a second step count based on a window of the sensor data; responsive to determining that a step was detected by the second pedometer, determining a third step count based on the window of sensor data; and determining a corrected step count based on the third step count.
Abstract:
Systems, methods, devices and computer-readable storage mediums are disclosed for device state estimation under pedestrian motion with swinging limb. In some implementations, a method comprises: determining, by a device, that the device is attached to a swinging limb based on a sensor signal; determining, by the device, a rotational velocity component due to the swinging limb based on the sensor signal and limb parameters; estimating, by the device, device velocity; and determining, by the device, user velocity based on the device velocity and the rotational velocity component.
Abstract:
Systems, methods, devices and computer-readable storage mediums are disclosed for device state estimation with body-fixed assumption. In some implementations, a method comprises: determining, by a device, a rotational velocity of a user of the device based on a sensor signal; determining, by the device, user speed; determining, by the device, user acceleration based on the user speed and the rotational velocity of the user; and updating a user state estimator based on the user acceleration.
Abstract:
The subject technology provides for visualizing a route traversed by a user during a movement event by periodically obtaining position information data from a receiver of a navigation system during a movement event. A path traversed by a user of a device that includes the receiver during the movement event is estimated based on the position information data. One or more previously mapped features within a proximity of the estimated path on a map are determined. The estimated path is matched to the map based on the previously mapped features to obtain a map-matched path. A display device is caused to render the map-matched path on an image of the map.
Abstract:
Methods, systems and computer program products for radionavigation for swimmers are described. A mobile device configured to estimate a location using radio frequency signals can estimate a position of the swimmer when the mobile device is worn on a limb of the swimmer and periodically submerged. The mobile device can supply auxiliary information to a radionavigation subsystem to correct a navigation solution affected by limb motion of the swimmer and affected by the periodic submersion of the mobile device.