Abstract:
Optical apparatus includes a semiconductor substrate and one or more radiation sources, mounted on a surface of the substrate and configured to emit optical radiation. A scanning mirror is mounted on the substrate and is configured to scan the reflected optical radiation over a predetermined angular range in a direction that is angled away from the surface.
Abstract:
Apparatus for mapping includes a radiation source, which is configured to emit a beam of radiation, and a detector and optics, which define a sensing area of the detector. A scanning mirror assembly is configured to receive and scan the emitted beam over a selected angular range within a region of interest while scanning the sensing area over the selected angular range in synchronization with the scanned beam from the radiation source. A processor is configured to process signals output by the detector in order to construct a three-dimensional (3D) map of an object in the region of interest.
Abstract:
Apparatus for mapping includes a radiation source, which is configured to emit a beam of radiation. A first scanning mirror is configured to receive and scan the emitted beam in a first direction over a selected angular range within a region of interest. A detector and optics define a sensing area of the detector. A second scanning mirror is configured to scan the sensing area over the selected angular range in the first direction in synchronization with the scanned beam from the radiation source. A scanner is configured to scan both the emitted beam and the sensing area over the region of interest in a second direction, which is perpendicular to the first direction. A processor is configured to process signals output by the detector in order to construct a three-dimensional (3D) map of an object in the region of interest.
Abstract:
Optical apparatus includes a semiconductor substrate and a first array of surface-emitting radiation sources, which are mounted on a surface of the substrate so as to emit optical radiation along respective axes that are perpendicular to the surface. A second array of optical elements is mounted over the first array and aligned with the respective axes so that each optical element receives and transmits the optical radiation emitted by a respective radiation source.
Abstract:
Optical apparatus includes a beam source, which is configured to generate an optical beam having a pattern imposed thereon. A projection lens is configured to receive and project the optical beam so as to cast the pattern onto a first area in space having a first angular extent. A field multiplier is interposed between the projection lens and the first area and is configured to expand the projected optical beam so as to cast the pattern onto a second area in space having a second angular extent that is at least 50% greater than the first angular extent.
Abstract:
Optical apparatus includes a diffractive optical element (DOE), which includes multiple optical surfaces, including at least an entrance surface and an exit surface, and a side surface, which is not parallel to the optical surfaces of the DOE. A grating is formed on at least one of the optical surfaces so as to receive radiation entering the DOE via the entrance surface and to diffract the radiation into a predefined pattern comprising multiple diffraction orders that exit the DOE via the exit surface. An optical detector is positioned in proximity to the side surface so as to receive and sense an intensity of a high order of the radiation diffracted from the grating that passes through the side surface of the DOE.
Abstract:
Apparatus for mapping includes a radiation source, which is configured to emit at least one beam of radiation, and a detector and optics, which define a sensing area of the detector. A scanner is configured to receive and scan the at least one beam over a selected angular range within a region of interest while scanning the sensing area over the selected angular range in synchronization with the at least one beam from the radiation source. A processor is configured to process signals output by the detector in order to construct a three-dimensional (3D) map of an object in the region of interest.
Abstract:
Apparatus for mapping includes a radiation source, which is configured to emit a beam of radiation. A first scanning mirror is configured to receive and scan the emitted beam in a first direction over a selected angular range within a region of interest. A detector and optics define a sensing area of the detector. A second scanning mirror is configured to scan the sensing area over the selected angular range in the first direction in synchronization with the scanned beam from the radiation source. A scanner is configured to scan both the emitted beam and the sensing area over the region of interest in a second direction, which is perpendicular to the first direction. A processor is configured to process signals output by the detector in order to construct a three-dimensional (3D) map of an object in the region of interest.
Abstract:
Optical apparatus includes first and second diffractive optical elements (DOEs) arranged in series to diffract an input beam of radiation. The first DOE is configured to apply to the input beam a pattern with a specified divergence angle, while the second DOE is configured to split the input beam into a matrix of output beams with a specified fan-out angle. The divergence and fan-out angles are chosen so as to project the radiation onto a region in space in multiple adjacent instances of the pattern.
Abstract:
Optical apparatus includes first and second diffractive optical elements (DOEs) arranged in series to diffract an input beam of radiation. The first DOE is configured to apply to the input beam a pattern with a specified divergence angle, while the second DOE is configured to split the input beam into a matrix of output beams with a specified fan-out angle. The divergence and fan-out angles are chosen so as to project the radiation onto a region in space in multiple adjacent instances of the pattern.