Abstract:
Features are disclosed for improving the accuracy and stability of beamformed signal selection. The selection may consider processing feedback information to identify when the current beam selection may need to be re-evaluated. The feedback information may further be used to select a beamformed signal for processing. For example, beams which detect wake-words or yield high confidence speech recognition may be favored over beams which fail to detect or recognize at a lower confidence level.
Abstract:
The systems, devices, and processes described herein may identify a beam of a voice-controlled device that is directed toward a reflective surface, such as a wall. The beams may be created by a beamformer. An acoustic echo canceller (AEC) may create filter coefficients for a reference sound. The filter coefficients may be analyzed to identify beams that include multiple peaks. The multiple peaks may indicate presence of one or more reflective surfaces. Using the amplitude and the time delay between the peaks, the device may determine that it is close to a reflective surface in a direction of the beam.
Abstract:
A wearable computer is configured to use beamforming techniques to isolate a user's speech from extraneous audio signals occurring within a physical environment. A microphone array of the wearable computer may generate audio signal data from an utterance from a user's mouth. A motion sensor(s) of the wearable computer may generate motion data from movement of the wearable computer. This motion data may be used to determine a direction vector pointing from the wearable computer to the user's mouth, and a beampattern may be defined that has a beampattern direction in substantial alignment with the determined direction vector to focus the microphone array on the user's mouth for speech isolation.
Abstract:
The systems, devices, and processes described herein may identify a beam of a voice-controlled device that is directed toward a reflective surface, such as a wall. The beams may be created by a beamformer. An acoustic echo canceller (AEC) may create filter coefficients for a reference sound. The filter coefficients may be analyzed to identify beams that include multiple peaks. The multiple peaks may indicate presence of one or more reflective surfaces. Using the amplitude and the time delay between the peaks, the device may determine that it is close to a reflective surface in a direction of the beam.
Abstract:
Devices and techniques are generally described for control of a voice-controlled device using acoustic echo cancellation statistics. A reference signal representing the audio stream may be sent to an acoustic echo cancellation (AEC) unit. A microphone may receive an input audio signal and send the input audio signal to the AEC unit. The AEC unit may attenuate at least a part of the input audio signal. AEC statistics related to the attenuation of at least the part of the input audio signal may be determined over a first period of time. A wake-word in the input audio signal may be detected during the first period of time. A determination may be made that the wake-word is part of the playback of the audio stream based at least in part on the AEC statistics.
Abstract:
In a speech-based system, a wake word or other trigger expression is used to preface user speech that is intended as a command. The system receives multiple directional audio signals, each of which emphasizes sound from a different direction. The signals are monitored and analyzed to detect the directions of interfering audio sources such as televisions or other types of electronic audio players. One of the directional signals having the strongest presence of speech is selected to be monitored for the trigger expression. If the directional signal corresponds to the direction of an interfering audio source, a more strict standard is used to detect the trigger expression. In addition, the directional audio signal having the second strongest presence of speech may also be monitored to detect the trigger expression.
Abstract:
Embodiments of systems and methods are described for determining which of a plurality of beamformed audio signals to select for signal processing. In some embodiments, a plurality of audio input signals are received from a microphone array comprising a plurality of microphones. A plurality of beamformed audio signals are determined based on the plurality of input audio signals, the beamformed audio signals comprising a direction. A plurality of signal features may be determined for each beamformed audio signal. Smoothed features may be determined for each beamformed audio signal based on at least a portion of the plurality of signal features. The beamformed audio signal corresponding to the maximum smoothed feature may be selected for further processing.