Abstract:
A method for measurement reporting to improve throughput when using multicarrier cells is disclosed. The method can include a wireless communication device performing a first measurement of a primary carrier and performing a second measurement of a secondary carrier. The method can further include the wireless communication device deriving a combined measurement as a function of the first measurement and the second measurement. The method can also include the wireless communication device reporting the combined measurement to a serving network.
Abstract:
A method for network reselection by a wireless communication device is provided. The wireless communication device can have an established connection to a first network. The method can include measuring a signal strength and a signal-to-noise ratio of the first network. The method can further include determining that the signal strength satisfies a signal strength threshold. The method can additionally include comparing the signal-to-noise ratio to a signal-to-noise ratio threshold. The method can also include disconnecting from the first network and reselecting to a second network in an instance in which the signal-to-noise ratio does not satisfy the signal-to-noise ratio threshold even though the signal strength satisfies the signal strength threshold.
Abstract:
Apparatus and methods to improve compatibility between a primary wireless device including multiple subscriber identity modules (SIMs) and a cellular capable secondary wireless device are disclosed. The cellular capable secondary wireless device pairs with the primary wireless device, which provides a configurable option to allow mobile terminated connections and/or messages to be received at the cellular capable secondary wireless device for multiple SIMs when the cellular capable secondary wireless device is not within proximity of the primary wireless device and is being worn. The primary wireless device indicates conditional forwarding to a second wireless network associated with a second SIM and adjusts notification alerts to reduce time for forwarding when the cellular capable secondary wireless device is separated from the primary wireless device and in use.
Abstract:
This disclosure relates to techniques for opportunistically depowering receiver chains of a wireless device. Based on control information, a device may determine whether the current number of active receiver chains can be reduced while maintaining a target achievable code rate for a period of data reception associated with the control information. Additionally, the device may generate and use a lookup table to determine whether to depower receiver chains, and which receiver chains to depower.
Abstract:
This disclosure relates to techniques for opportunistically depowering receiver chains of a wireless device. Based on control information, a device may determine whether the current number of active receiver chains can be reduced while maintaining a target achievable code rate for a period of data reception associated with the control information. Additionally, the device may generate and use a lookup table to determine whether to depower receiver chains, and which receiver chains to depower.
Abstract:
Methods, apparatuses and computer readable media are described that configure wireless circuitry in a wireless communication device. The wireless communication device establishes a connection via one or more component carriers to a wireless network using wireless circuitry that includes multiple radio frequency receive signal chain. The wireless communication device monitors traffic activity and measures downlink radio frequency receive signal conditions for each component carrier. The wireless communication device reconfigures the wireless circuitry to use a number of RF receive signal chains that matches a maximum supportable modulation and coding scheme (MCS) value for each component carrier to MCS values assigned by the wireless network to the respective component carrier. The wireless communication device reduces the number of RF receive signal chains for a component carrier only when reliable decoding of the physical downlink control channel (PDCCH) and/or the physical hybrid automatic repeat request indicator channel (PHICH) can be reliably decoded.
Abstract:
Methods, apparatuses and computer readable media are described that configure wireless circuitry in a wireless communication device. The wireless communication device establishes a connection via one or more component carriers to a wireless network using wireless circuitry that includes multiple radio frequency receive signal chain. The wireless communication device monitors traffic activity and measures downlink radio frequency receive signal conditions for each component carrier. The wireless communication device reconfigures the wireless circuitry to use a number of RF receive signal chains that matches a maximum supportable modulation and coding scheme (MCS) value for each component carrier to MCS values assigned by the wireless network to the respective component carrier. The wireless communication device reduces the number of RF receive signal chains for a component carrier only when reliable decoding of the physical downlink control channel (PDCCH) and/or the physical hybrid automatic repeat request indicator channel (PHICH) can be reliably decoded.
Abstract:
Methods and apparatus for reducing voice call drop rate are disclosed. Existing devices do not account for the added burden of background services on voice calls. Specifically, multi-RAB scenarios (e.g., a voice call and background services) can experience significant reduction in call quality. Accordingly, in one exemplary embodiment, background services that are not time-critical and/or application-critical can be suspended while a voice call is in progress. By suspending background traffic during a call, the device can avoid unnecessary multi-RAB voice call operation, which significantly improves overall network operation and user experience.
Abstract:
A method for measurement reporting to improve throughput when using multicarrier cells is disclosed. The method can include a wireless communication device performing a first measurement of a primary carrier and performing a second measurement of a secondary carrier. The method can further include the wireless communication device deriving a combined measurement as a function of the first measurement and the second measurement. The method can also include the wireless communication device reporting the combined measurement to a serving network.
Abstract:
In an example method, a user equipment (UE) of a wireless network determines data for transmission between the UE and a base station (BS) of the wireless network; determines a context of the transmission of the data between the UE and the BS; selects, based on the context, one or more antenna elements of an antenna array of the UE; and forms one or more wireless beams using the one or more selected antenna elements. Further, the UE (i) transmits at least a first portion of the data to the BS using the one or more wireless beams, and/or (ii) receives at least a second portion of the data from the BS using the one or more wireless beams.