Abstract:
The following examples and embodiments are directed to an induction coil that can be used in a variety of applications, including, for example, induction charging systems. In one example, an induction coil is configured to couple an electrical field between a base device and a mobile device in an inductive charge system. The induction coil includes a coil substrate formed by a molding process. The induction coil also includes a shield element disposed within the coil substrate. The shield element may be formed within the coil substrate as part of the molding process. A conductive winding is also formed within a surface of the coil substrate. In some cases, the coil substrate is formed by an injection-molding process.
Abstract:
A securement arm for an optical device includes a first portion having a first electronic component, the first portion connected to a viewing frame of the optical device. The securement arm also includes a second portion having a second electronic component coupled to the first portion by a spring element. The spring element can include a plastic deformation element and an elastic element. The securement arm also includes an electrical connector extending through the spring element and electrically connecting the first electronic component and the second electronic component.
Abstract:
Connector structures that can help to reduce corrosion of contacts in a connector receptacle and can reduce liquid ingress into an electronic device that houses the connector receptacle. An example can increase an effective width between adjacent contacts. This and other examples can force dendritic growth to occur in a location where it can be at least partially cleared by the insertion of a corresponding connector into the connector receptacle.
Abstract:
A vehicle includes a roof panel, an opening defined by the roof panel and a movable panel assembly that is configured to move between a closed position and an open position with respect to the opening. A first track is located above the roof panel at a first lateral side of the movable panel, and a second track located above the roof panel at a second lateral side of the movable panel, wherein the movable panel is supported by the first track and the second track for movement between the closed position and the open position.
Abstract:
A system such as a vehicle may have adjustable structures such as adjustable windows. Adjustable windows may have adjustable layers such as adjustable tint layers, adjustable reflectivity layers, and adjustable haze layers. Adjustable window layers may be incorporated into a window with one or more transparent structural layers such as a pair of glass window layers. Adjustable components such as adjustable reflectivity layers, adjustable haze layers, and adjustable tint layers may be interposed between the pair of glass window layers. Fixed partially reflective mirrors, fixed tint layers, and/or fixed haze layers may be used in place of adjustable tint, haze, and reflectivity layers and/or may be incorporated into windows in addition to adjustable tint, haze, and reflectivity layers.
Abstract:
Light-based devices may be provided that emit light. The light-based devices may be incorporated into systems such as vehicles. The light-based devices may include light sources such as light-emitting diodes and lasers. Mirrors may be used to collimate light from the light sources. Light modulators may be used to pattern light from the light sources. The light sources may include light sources of different colors. Arrays of pixels may be used to provide dynamically varying patterns of emitted light. A light source may produce light that is diffracted by an array of diffractive elements on a window. Mechanical and electrical shutters may obscure light sources, mirrors, and light-emitting components mounted on windows.
Abstract:
A dual subscriber identity module (SIM) card connector is provided that includes a lower connector housing portion having a bottom surface and an upper connector housing portion having a top surface. The upper connector housing portion is coupled to the lower connector housing portion to define an opening for a receiving space between the upper and lower connector housing portions. The opening and receiving space are sized and shaped to slidably receive a SIM card tray. The connector includes a first plurality of electrical contacts disposed at the bottom surface of the lower connector housing portion and configured to make contact with a first SIM card disposed on a first side of the SIM card tray when the tray is received within the receiving space. The connector includes a second plurality of electrical contacts disposed at the top surface of the upper connector housing portion and configured to make contact with a second SIM card disposed on a second side of the SIM card tray opposite the first side when the tray is received within the receiving space.
Abstract:
An accessory device including a foldable cover, a keyboard assembly coupled to the foldable cover and including a plurality of individually depressible keys, an attachment feature connected to the enclosure and configured to magnetically couple the accessory device with the electronic device. The attachment feature includes an exterior surface, a plurality of openings formed through the exterior surface, a plurality of movable contacts corresponding in number to the plurality of openings, each movable contact extending out of one of the plurality of openings, and an alignment feature comprising at least one magnet positioned adjacent to the plurality of openings.
Abstract:
Methods and systems for automatically aligning a power-transmitting inductor with a power-receiving inductor. One embodiment includes multiple permanent magnets coupled to and arranged on a surface of a movable assembly accommodating a power-transmitting inductor. The permanent magnets encourage the movable assembly to freely move and/or rotate via magnetic attraction to correspondingly arranged magnets within an accessory containing a power-receiving inductor.
Abstract:
An electronic device comprising a device enclosure having an exterior surface; a contact area positioned at the exterior surface and having first and second ends, the contact area having a plurality of contacts arranged between the first and second ends and substantially flush with the exterior surface; and an alignment feature within the enclosure comprising first and second magnets positioned on opposing sides of the contact area, the first magnet positioned adjacent to the first end of the contact area and the second magnet positioned adjacent to the second end of the contact area.