Abstract:
A micro speaker having a capacitive sensor to sense a motion of a speaker diaphragm, is disclosed. More particularly, embodiments of the micro speaker include a conductive surface of a diaphragm facing conductive surfaces of several capacitive plate sections across a gap. The diaphragm may be configured to emit sound forward away from a magnet of the micro speaker, and the capacitive plate sections may be supported on the magnet behind the diaphragm. In an embodiment, the gap provides an available travel for the diaphragm, which may be only a few millimeters. A sensing circuit may sense capacitances of the conductive surfaces to limit displacement of the diaphragm to within the available travel.
Abstract:
A thermal control module computes an estimate of a temperature of a speaker, based on an audio signal that is driving the speaker, and computes a gain that is applied to attenuate the audio signal to prevent overheating of the speaker. Thermal control module computes an adapted impedance, being an estimate of the speaker's impedance including its DC resistance, and uses it to compute the temperature estimate. The adapted impedance is obtained from a normal adaptation process when a measured voltage of the speaker is above a threshold, and a decay process when the measured voltage is below the threshold. Other embodiments are also described.
Abstract:
Disclosed are systems and methods for automatically transitioning between communication modes of wearable audio output devices based solely on acoustic analysis. The audio output devices may operate in one of three electroacoustic modes. In the transparency mode, an audio output device may pass through the speech signal of a nearby user. In the peer-to-peer mode, the audio output device may establish a direct low-latency radio frequency (RF) link to another audio output device. In the telephony mode, the audio output device may communicate with another audio output device using networked telephony. The disclosed methods and systems perform acoustic analysis of the near-field speech signal of a local wearer of the audio output device and the far-field speech signal of a remote talker to determine the best mode for the audio output device to use and to seamlessly transition between the modes as the acoustic environment between the wearers changes.
Abstract:
Disclosed are systems and methods for automatically transitioning between communication modes of wearable audio output devices based solely on acoustic analysis. The audio output devices may operate in one of three electroacoustic modes. In the transparency mode, an audio output device may pass through the speech signal of a nearby user. In the peer-to-peer mode, the audio output device may establish a direct low-latency radio frequency (RF) link to another audio output device. In the telephony mode, the audio output device may communicate with another audio output device using networked telephony. The disclosed methods and systems perform acoustic analysis of the near-field speech signal of a local wearer of the audio output device and the far-field speech signal of a remote talker to determine the best mode for the audio output device to use and to seamlessly transition between the modes as the acoustic environment between the wearers changes.
Abstract:
An earphone comprising an earphone housing having a wall comprising (1) a front side that joins (2) an end portion in which a primary sound output opening is formed, which joins (3) a face portion in which a secondary output opening is formed, which joins (4) a back side which joins the front side and encloses a driver, wherein the face portion and the front side form a tapered portion of the earphone housing that is dimensioned to be inserted into, and contact, an ear of a wearer, wherein the primary output opening is dimensioned to output sound generated by a diaphragm of the driver contained within the earphone housing into the ear, the secondary output opening is dimensioned to vent the ear to a surrounding environment, and wherein the primary output opening and the secondary output opening face different directions and are positioned over a sound output face of the driver.
Abstract:
An earphone comprising an earphone housing having a wall comprising (1) a front side that joins (2) an end portion in which a primary sound output opening is formed, which joins (3) a face portion in which a secondary output opening is formed, which joins (4) a back side which joins the front side and encloses a driver, wherein the face portion and the front side form a tapered portion of the earphone housing that is dimensioned to be inserted into, and contact, an ear of a wearer, wherein the primary output opening is dimensioned to output sound generated by a diaphragm of the driver contained within the earphone housing into the ear, the secondary output opening is dimensioned to vent the ear to a surrounding environment, and wherein the primary output opening and the secondary output opening face different directions and are positioned over a sound output face of the driver.
Abstract:
In one aspect, multiple adaptive W filters and associated adaptive filter controllers are provided that use multiple reference microphone signals to produce multiple, “component” anti-noise signals. These are gain weighted and summed to produce a single anti-noise signal, which drives an earpiece speaker. The weighting changes based on computed measures of the coherence between content in each reference signal and content in an error signal. Other embodiments are also described and claimed.
Abstract:
Apparatuses, methods, computer readable mediums, and systems are described for combined dynamic processing and speaker protection for minimizing distortion in audio playback. In some embodiments, at least one compressed audio signal is received, at least one threshold for a speaker is retrieved, modifications to audio signal compression are determined based on the at least one compressed audio signal and the at least one threshold, information embodying the modifications is transmitted to a dynamic processor, and using the dynamic processor, at least one modified compressed audio signal is produced for the speaker based on the information.
Abstract:
Aspects of the subject technology relate to electronic devices having speakers. An electronic device may include speaker control circuitry for a speaker. The speaker control circuitry may include multiple parallel prediction blocks that share a single look-ahead delay, and that feed, in parallel, a single controller. The single controller can generate a joint modification to an audio signal based on the parallel outputs of the prediction blocks. The joint modification can then be applied to the audio signal to generate a speaker-protection audio signal that can be output by the speaker. The speaker control circuitry may also include a system modeler that models the speaker system of the electronic device based on feedback measured physical characteristics. In this way, a reduced control safety margin can be achieved by more accurate model predictors, which can allow the controller to safely drive the speaker system to its full capability.
Abstract:
A device that includes a microphone may be worn in or on an ear of a user. A microphone signal generated by the microphone may be processed to determine a heart activity of a user. An indication of a heart pathology may be detected by applying a predictive algorithm to at least the heart activity. Other aspects are described.