Abstract:
Computer applications may generate event data based on a large volume of different types of record data. Described herein are systems, methods, and devices for enabling a computing node to implement new functions for dynamically consuming the event data. In one example, the computing node may implement a new function using an expression language, without modifying predefined hard coded functions.
Abstract:
Examples of systems and methods are described for managing computing capacity by a provider of computing resources. The computing resources may include program execution capabilities, data storage or management capabilities, network bandwidth, etc. Multiple user programs can consume a single computing resource, and a single user program can consume multiple computing resources. Changes in usage and other environmental factors can require scaling of the computing resources to reduce or prevent a negative impact on performance. In some implementations, a fuzzy logic engine can be used to determine the appropriate adjustments to make to the computing resources associated with a program in order to keep a system metric within a desired operating range.
Abstract:
Techniques are described for managing program execution capacity or other capacity of computing-related hardware resources used to execute software programs, such as for a group of computing nodes that is in use executing one or more programs for a user. Dynamic modifications to the program execution capacity of the group may include adding or removing computing nodes, such as in response to automated determinations that previously specified triggers are currently satisfied, and may be automatically governed at particular times based on automatically generated predictions of program execution capacity that will be used at those times by the group, such as to verify that requested dynamic execution capacity modifications at a time are within the predicted execution capacity values for that time. In some situations, the techniques are used in conjunction with a fee-based program execution service that executes multiple programs on behalf of multiple users of the service.
Abstract:
Systems and methods are provided for analyzing operating metrics of monitored metric sources. Aspects of the present disclosure may present for display information associated with the monitored metric source and the analysis of its operating metrics. Analysis comprises determination of reference values and tolerance levels which represent allowable deviations from the reference values. Input data includes a measurement of an operating parameter and a time stamp. Input data may be saved to a data store for using in future analysis of other input data. When input data is determined to be outside the tolerance level, notifications may be issued to alert administrators or systems of the anomaly.
Abstract:
Examples of systems and methods are described for managing computing capacity by a provider of computing resources. The computing resources may include program execution capabilities, data storage or management capabilities, network bandwidth, etc. Multiple user programs can consume a single computing resource, and a single user program can consume multiple computing resources. Changes in usage and other environmental factors can require scaling of the computing resources to reduce or prevent a negative impact on performance. In some implementations, a fuzzy logic engine can be used to determine the appropriate adjustments to make to the computing resources associated with a program in order to keep a system metric within a desired operating range.
Abstract:
Systems and methods are provided for analyzing operating metrics of monitored metric sources. Aspects of the present disclosure may present for display information associated with the monitored metric source and the analysis of its operating metrics. Analysis comprises determination of reference values and tolerance levels which represent allowable deviations from the reference values. Input data includes a measurement of an operating parameter and a time stamp. Input data may be saved to a data store for using in future analysis of other input data. When input data is determined to be outside the tolerance level, notifications may be issued to alert administrators or systems of the anomaly.
Abstract:
Computer applications may generate event data based on a large volume of different types of record data. Described herein are systems, methods and devices for providing website recommendations using the event data. In one example, using the event data, a computing node generates the website recommendations within a designated amount of time after the generation of the record data.
Abstract:
Techniques are described for performing automated predictions of program execution capacity or other capacity of computing-related hardware resources that will be used to execute software programs in the future, such as for a group of computing nodes that execute one or more programs for a user. The predictions that are performed may in at least some situations be based on historical data regarding corresponding prior actual usage of execution-related capacity (e.g., for one or more prior years), and may include long-term predictions for particular future time periods that are multiple months or years into the future. In addition, the predictions of the execution-related capacity for particular future time periods may be used in various manners, including to manage execution-related capacity at or before those future time periods, such as to prepare sufficient execution-related capacity to be available at those future time periods.
Abstract:
Techniques are described for performing automated predictions of program execution capacity or other capacity of computing-related hardware resources that will be used to execute software programs in the future, such as for a group of computing nodes that execute one or more programs for a user. The predictions that are performed may in at least some situations be based on historical data regarding corresponding prior actual usage of execution-related capacity (e.g., for one or more prior years), and may include long-term predictions for particular future time periods that are multiple months or years into the future. In addition, the predictions of the execution-related capacity for particular future time periods may be used in various manners, including to manage execution-related capacity at or before those future time periods, such as to prepare sufficient execution-related capacity to be available at those future time periods.