Abstract:
An airway condition of a patient is treated by selecting an implant sized to be implanted within a soft palate of the patient. The implant has a tissue-engaging member sized to be implanted within the soft palate near a trailing end of the soft palate to oppose relative movement between the tissue-engaging member and surrounding tissue of the soft palate. The implant further has an elongated tether member with a first end secured to the tissue-engaging member. The implant is placed within the soft palate with the tissue-engaging member implanted within tissue of the soft palate near the trailing end and with the tether member extending from the first end to a second end near a hard palate of the patient. The second end of the tether is secured to the hard palate.
Abstract:
Methods and apparatuses are disclosed for treating a condition of a patient's airway. The condition is attributed at least in part to a spacing of tissue from opposing surfaces in the airway. In various embodiments, the base of the tongue including geometry and position of the tongue is altered.
Abstract:
At least one of a plurality of disorders of a patient characterized at least in part by vagal activity innervating at least one of a plurality of organs of the patient is treated by a method that includes positioning a neurostimulator carrier around a body organ of the patient where the organ is innervated by at least a vagal trunk. An electrode is disposed on the carrier and positioned at the vagal trunk. An electrical signal is applied to the electrode to modulate vagal activity by an amount selected to treat the disorder. The signal may be a blocking or a stimulation signal.
Abstract:
At least one of a plurality of disorders of a patient characterized at least in part by vagal activity innervating at least one of a plurality of organs of the patient is treated by a method that includes positioning a neurostimulator carrier around a body organ of the patient where the organ is innervated by at least a vagal trunk. An electrode is disposed on the carrier and positioned at the vagal trunk. An electrical signal is applied to the electrode to modulate vagal activity by an amount selected to treat the disorder. The signal may be a blocking or a stimulation signal.
Abstract:
At least one of a plurality of disorders of a patient characterized at least in part by vagal activity innervating at least one of a plurality of organs of the patient is treated by a method that includes positioning a neurostimulator carrier around a body organ of the patient where the organ is innervated by at least a vagal trunk. An electrode is disposed on the carrier and positioned at the vagal trunk. An electrical signal is applied to the electrode to modulate vagal activity by an amount selected to treat the disorder. The signal may be a blocking or a stimulation signal.
Abstract:
A method and apparatus for treating a patient's health condition by diverting pancreatic exocrine secretions include a flow diverter of material compatible with chronic residence within a small intestine of the patient. The flow diverter has a cover end and a discharge end. The flow diverter is sized to be placed within the small intestine with the discharge end placed distally from said cover end and with said flow diverter further sized so permit passage of chyme through the small intestine and past the flow diverter. The cover end is sized to cover a discharge papilla of the pancreatic duct. The diverter is adapted to divert at least a portion of pancreatic exocrine secretion from the papilla to the distal discharge end.
Abstract:
One aspect of the present invention relates to a method for passing a fluid through a shunt located in the wall of a heart, the shunt providing fluid communication between a heart chamber and a coronary artery, with a hollow catheter. Another aspect of the present invention relates to a method of inserting a wire through a shunt located in the wall of a heart with a hollow catheter. A further aspect of the present invention relates to passing fluid through a shunt located in the wall of a heart, the shunt providing fluid communication between a heart chamber and a coronary artery, by injecting fluid into the heart chamber. A further aspect of the present invention relates to a catheter with a flexible, hollow, inner member to which a self expanding basket is attached. A further aspect of the present invention relates to a method of passing a radio-opaque contrast fluid through a shunt located in a heart wall, the shunt providing fluid communication between a heart chamber and a coronary artery. A further aspect of the present invention relates to inserting a wire into a coronary artery through a shunt located in a heart wall, the shunt providing fluid communication between a heart chamber and the coronary artery. A still further aspect of the present invention relates to a catheter including an inner tube with a self-expanding basket and an outer sheath about the inner tube. A further aspect of the present invention relates to a catheter with a flexible inner member with a shunt locating element at a distal end and an outer sheath about the inner member.
Abstract:
A method and apparatus for treating patients suffering from involuntary movement disorders (including epilepsy) by stimulating a selected cranial nerve of the patient with an electrical signal applied to induce a signal at brain by applying an electrical signal at the nerve to ameliorate the disorder and by applying a neural conduction block at the nerve selected to at least partially block nerve impulses on said nerve at a blocking site and reduce adverse effects of said signal on an organ.
Abstract:
A method and apparatus for treating snoring of a patient includes providing an implant for altering a dynamic response of a soft palate of the patient to airflow past the soft palate. The implant is embedded in the soft palate to alter the dynamic response. The implant has multiple fibers braided along a length of the implant.
Abstract:
This invention relates to radio communication networks and more particularly, but not exclusively, to radio communication networks using multiple access techniques. A system and method for adaptively changing the characteristics of a signal transmitted across the network is provided. In one embodiment, the communications network includes at least two transceivers; wherein at least one of the transceivers is capable of sending a feedback signal to the other transceiver after receiving a signal transmitted over the network from the other transceiver after analysis of the transmitted signal and in the event that the signal characteristics of the system need to be varied.