Abstract:
A fuel system for an energy conversion device includes a deoxygenator system with a reducing system and an active metal catalyst system downstream thereof. The reducing system injects a reducing agent such as hydrogen into the liquid hydrocarbon fuel which contains the dissolved oxygen. The liquid hydrocarbon fuel with the dissolved oxygen is thereby enriched with the reducing agent prior to communication to the active catalyst system which reactively consumes the free oxygen dissolved within the liquid hydrocarbon fuel.
Abstract:
A photocatalytic/thermocatalytic coating includes an inner layer of metal/titanium dioxide or metal oxide/titanium dioxide that is applied on a honeycomb and an outer layer of titanium dioxide or metal oxide doped titanium dioxide applied on the inner layer. The inner layer of can be gold/titanium dioxide, platinum/titanium dioxide, or manganese oxide/titanium dioxide. The outer layer of titanium dioxide or metal oxide doped titanium dioxide oxides volatile organic compounds to carbon dioxide, water, and other substances. As the outer layer is thin and porous, the contaminants in the air can diffuse through the outer layer and adsorb onto the inner layer. When photons of the ultraviolet light are absorbed by the coating, reactive hydroxyl radicals are formed that oxidize the contaminant to produce water, carbon dioxide, and other substances.
Abstract:
A durable catalyst support/catalyst is capable of extended water gas shift operation under-conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m2/cm3. The method of making and use are also described.
Abstract translation:耐用的催化剂载体/催化剂能够在高温,高压和硫含量的条件下进行扩展的水煤气变换操作。 载体是至少三种金属的均匀的,纳米晶体的混合金属氧化物,第一种是铈,第二种是Zr,和/或Hf,第三种是重要的Ti,三种金属包含至少80%的金属 混合金属氧化物的成分和Ti的含量以混合金属氧化物的原子百分比计为5%〜45%的范围。 混合金属氧化物的平均微晶尺寸小于6nm,并且形成具有直径在4-9nm范围内且通常大于平均微晶尺寸的孔的骨架结构。 骨架结构的每体积结构的材料的表面积大于约240μm2 / cm 3。 还描述了制造和使用的方法。
Abstract:
A solar-powered hydrogen production system directly produces hydrogen. The solar-powered hydrogen production system includes at least one concentrator, a hydrogen-rich source, a catalytic layer, and a hydrogen separation membrane. The hydrogen-rich source is positioned to receive focused sunlight collected by the concentrator and is in direct contact with the catalytic layer. The catalytic layer produces hydrogen from the hydrogen-rich source. The hydrogen separation membrane subsequently separates the hydrogen produced at the catalytic layer.
Abstract:
A fuel delivery system for a gas turbine engine includes a catalytic device for treating fuel to increase the usable cooling capability of an endothermic fuel. The catalytic device operates to treat and decompose components within in the fuel to render the fuel non-coking beyond 250° F. The catalytic device includes material that initiates reactions, and decomposition of coke forming components within the fuel to non-coke forming components within the fuel.