Abstract:
A method of triggering a component in a distributed safety-related system, i.e., a component of an X-by-wire system in a motor vehicle, is described. The component is triggered by a process computer assigned to the component and connected to a communication system via a communications controller. A monitoring unit which is independent of the process computer is provided for monitoring the process computer. To simplify the configuration of such a safety-related system while at the same time at least retaining the safety that is achievable on enabling the components, the functions of the monitoring unit are executed by the communications controller. The communications controller may execute a question-and-answer communication with the process computer.
Abstract:
A method and communication system for exchanging data between at least two stations that are connected to one another via a distributed bus system, in which the data is contained in messages that are sent by the stations via the bus system. A common global time base, which at a predefinable instant is synchronized with an external reference time, and is provided for the stations of the bus system. To ensure reliable synchronization of the global time base with the external reference time, in particular without destroying the characteristics of the global time, (that is, without causing jumps in the global time base or a regressive global time), the stations of the communication system receive information regarding correction of the global time base, consent to a uniform correction value, and synchronously carry out external synchronization (that is, correction of the global time base).
Abstract:
A method, a device, and a bus system for synchronizing at least two TTCAN buses having at least one bus user, a global time being determined in each TTCAN bus, and the deviations in the global times of the TTCAN buses being determined from the global times, the TTCAN buses being connected via at least one user and the deviations in the individual global times being transmitted to at least one bus user, and the global times of the TTCAN buses connected via at least one user being adjusted to one another as a function of the deviations in the global times, so that the TTCAN buses are synchronized with respect to the global times.
Abstract:
A method and device for the exchange of data in messages between at least two users which are connected by a bus system and have separate time bases, the messages containing the data being transmitted by the users via the bus system; and a first user, in a function as timer, controls the messages as a function of time in such a way that it repeatedly transmits a reference message, which contains time information regarding the time base of the first user, via the bus at a specifiable time interval; the at least second user forms its own time information, using its time base, as a function of the time information of the first user; a correction value is ascertained from the two pieces of time information; and the second user adapts its time information and/or its time base as a function of the correction value.
Abstract:
A cable connector includes a housing, a first screwed cable gland for receiving a first cable, and a second screwed cable gland for receiving a second cable. The first cable can be connected to the second cable using a contact device. The cable connector also includes a locking device which, when screwing at least one screwed cable gland to the housing, locks said screwed cable gland to the housing so that the cables are mounted on the housing in a protected manner.
Abstract:
A method for establishing a driving profile includes recording a value of an operating characteristic of a motor vehicle with the aid of a sensor situated in the motor vehicle at a first point in time, linking the value to a piece of location information indicating a position of the motor vehicle to obtain a linked piece of information, transferring the linked piece of information to a server, evaluating a plurality of linked pieces of information to ascertain a driving profile which includes location-dependent values of the operating characteristic, transferring the driving profile to the motor vehicle, and ascertaining a deviation between a value of the operating characteristic of the motor vehicle and a value of the operating characteristic included in the driving profile at a position of the motor vehicle at a second point in time.
Abstract:
A method for preparing a driving profile includes: recording a value of an operating characteristic of a motor vehicle by a sensor situated inside the motor vehicle; linking the value with location information indicating a position of the motor vehicle in order to obtain linked information; transmitting the linked information to a server; analyzing a plurality of linked items of information in order to detect a target location where a probability of the occurrence of a traffic jam lies above a threshold value; preparing route information by which travel in the target location is avoided; and transmitting the route information to a motor vehicle.
Abstract:
A method for operating a driver assistance system of a vehicle, including receiving data transmitted to the vehicle; using the received data for a decision as to whether or not the driver assistance system is to provide a driver assistance function, characterized by archiving of the data used.Moreover, the invention relates to a driver assistance system for a vehicle, a system for operating a driver assistance system for a vehicle, and a computer program are described.
Abstract:
A method for establishing a global time base in a time-controlled communications system comprising a network and multiple subscribers connected to it. At least one of the subscribers of the communications system is defined as a time master with which the remaining subscribers are synchronized. In order to allow for a synchronization of the communications system that is on the one hand as simple as possible and realizable at low cost and on the other hand is secure and reliable, the present invention provides for one subscriber to be defined as the main time master and at least one further subscriber to be defined as a reserve time master. The order of the reserve time masters is predefined in the event that more than one subscriber is defined as a reserve time master. First an attempt is made to synchronize all subscribers of the communications system with the main time master. If this fails, then in each case the next reserve time master in the predefined order is selected and the attempt is made to synchronize all subscribers of the communications system with the selected reserve time master until either the synchronization of the subscribers of the communications system is successful or a synchronization of the subscribers with the last reserve time master fails as well.
Abstract:
The invention relates to a cyclical time-based communication system, for the transmission of useful data (DATA) between users of the system, which comprises a databus and users connected thereto. The data transmission occurs within cyclical repeating timeframes, each with at least two timeslots. Each timeslot is provided for the transmission of a message (Ni). A message (Ni) comprises at least part of the useful data (DATA) and each message (Ni) is provided with a code (ID). The bandwidth available for data transmission may be better utilized, if the code (ID) is placed within the message (Ni) as a part thereof, each message (Ni) is additionally provided with time information concerning the timeslot which may be extracted from the code and at least one of the timeslots within the timeframes may be used for transmission of various messages in various cycles. In a preferred embodiment the information relating to the current cycle comprises an ordinal number for the cycle. In the simplest case the number has two values 0 and 1. Even and odd cycles can thus be differentiated. The ordinal number may be increased to differentiate more cycles from each other. The transmission method is preferably based on the FlexRay protocol.