Abstract:
A system and method for providing real-time traffic information using a wireless vehicle-to-vehicle communications network. A vehicle includes a plurality of sensors that detect other vehicles around the vehicle. The wireless communications system on the vehicle uses the sensor signals to calculate a traffic condition index that identifies traffic information around the vehicle. The vehicle broadcasts the traffic condition index to other vehicles and/or road side infrastructure units that can present the information to the vehicle driver, such as in a navigation system, and/or rebroadcast the traffic information to other vehicles. The traffic condition index can be calculated using the speed of the surrounding vehicles, posted speed limits, the distance between the surrounding vehicles and the traffic density of the surrounding vehicles.
Abstract:
A control system and method for use in vehicles, such as automotive vehicles. The control system and method is particularly adapted for use in vehicles having by-wire control systems. The control system uses three system controllers. Each of the controllers is adapted to receive redundant control inputs from at least one input device, such as a steering actuator, an accelerator actuator and a brake actuator. Each controller is adapted to receive a different unprocessed actuator sensor signal and a processed actuator sensor signal which are associated with the input device. Each controller may also be adapted to receive a sensor status signal which is also associated with the input device. In accordance with the method of the invention, these signals may be used to determine a sensor signal which may be used as the basis for control of control systems or components in response to the input device. Depending on the status of these signals, the sensor signal used for control may comprise the processed sensor signal or a resolved sensor signal. The sensor signal used for control may be determined by implementing a voting process in conjunction with the controllers which utilizes both the unprocessed sensor signals and the processed sensor signals.
Abstract:
A method and system are disclosed herein for confirming a potentially unintended command given to a vehicle. The method includes, but is not limited to, receiving a command from an operator configured to cause actuation of a vehicle system. The method further includes, but is not limited to, detecting a condition of the vehicle. The method further includes, but is not limited to, determining, with a processor, that the command is inconsistent with the condition. The method still further includes, but is not limited to alerting the operator that the command is inconsistent with the condition.
Abstract:
A system and method for providing real-time traffic information using a wireless vehicle-to-vehicle communications network. A vehicle includes a plurality of sensors that detect other vehicles around the vehicle. The wireless communications system on the vehicle uses the sensor signals to calculate a traffic condition index that identifies traffic information around the vehicle. The vehicle broadcasts the traffic condition index to other vehicles and/or road side infrastructure units that can present the information to the vehicle driver, such as in a navigation system, and/or rebroadcast the traffic information to other vehicles. The traffic condition index can be calculated using the speed of the surrounding vehicles, posted speed limits, the distance between the surrounding vehicles and the traffic density of the surrounding vehicles.
Abstract:
A system and method for determining the root cause of a fault in a vehicle system, sub-system or component using models and observations. In one embodiment, a hierarchical tree is employed to combine trouble or diagnostic codes from multiple sub-systems and components to get a confidence estimate of whether a certain diagnostic code is accurately giving an indication of problem with a particular sub-system or component. In another embodiment, a hierarchical diagnosis network is employed that relies on the theory of hierarchical information whereby at any level of the network only the required abstracted information is being used for decision making. In another embodiment, a graph-based diagnosis and prognosis system is employed that includes a plurality of nodes interconnected by information pathways. The nodes are fault diagnosis and fault prognosis nodes for components or sub-systems, and contain fault and state-of-health diagnosis and reasoning modules.