Abstract:
Current sensing is performed in a non-volatile storage device for a non-volatile storage element. A voltage is applied to a selected word line of the first non-volatile storage element, and source and p-well voltages are applied to a source and a p-well, respectively, associated with the non-volatile storage element. The source and p-well voltages are regulated at respective positive DC levels to avoid a ground bounce, or voltage fluctuation, which would occur if the source voltage at least was regulated at a ground voltage. A programming condition of the non-volatile storage element is determined by sensing a current in a NAND string of the non-volatile storage element. The sensing can occur quickly since there is no delay in waiting for the ground bounce to settle.
Abstract:
Current sensing is performed in a non-volatile storage device for a selected non-volatile storage element with a negative threshold voltage. A control gate read voltage is applied to a selected word line of a non-volatile storage element, and source and p-well voltages are applied to a source and a p-well, respectively, associated with the non-volatile storage element. The source and p-well voltages exceed the control gate read voltage so that a positive control gate read voltage can be used. There is no need for a negative charge pump to apply a negative word line voltage even for sensing a negative threshold voltage. A programming condition of the non-volatile storage element is determined by sensing a voltage drop which is tied to a fixed current which flows in a NAND string of the non-volatile storage element.
Abstract:
According to different embodiments of the present invention, various methods, devices and systems are described for managing power in charge pumps in a non-volatile memory system having a high voltage charge pump and associated regulator. A method includes the following operations, receiving an operation command corresponding to an operation, pumping up a charge pump output voltage to a desired output voltage, turning off the regulator and the charge pump when the output voltage is approximately the desired output voltage compensating for charge sharing by turning on the charge pump and setting a pump clock rate to a slow clock rate in order to avoid overshooting the desired output voltage by the charge pump while the operation is being carried out, and compensating for junction leakage by turning on the regulator and the charge pump until the charge pump output voltage is the desired output voltage.