Abstract:
A static memory has an address transition detector, an input data transition detector and a pulse signal generator. When a detector detects that an input address or input data has changed, the pulse signal generator produces a pulse signal having a width longer than the shorter of the data-reading or data-writing cycle. This pulse signal controls the period of time during which a penetrating DC current flows between two power sources via some of the components of the memory.
Abstract:
A refresh control circuit for a pseudo static random access memory includes a refresh control signal output circuit for outputting a refresh control signal to accomplish refresh control of the pseudo static random access memory, and includes a delay circuit. A first chip enable signal from a control device such as a MPU is delayed by the delay circuit and outputted as a second chip enable signal for the PSRAM. As the first chip enable signal level changes from a selection level to a non-selection level, the refresh control signal level also changes to a non-refresh level. This state is maintained for a predetermined period. After the second chip enable signal changes from the selection level to the non-selection level, the refresh control signal returns from the non-refresh level to the refresh level. Thus, the PSRAM enters into the refresh state during the non-selection state, and is refreshed. This refresh operation is necessarily performed after an access to PSRAM.
Abstract:
A television signal receiving apparatus of the type in which when performing a picture in picture operation by receiving a plurality of picture signals compressed in band width by multiple sub-Nyquist sampling, a sub-channel signal is first subjected to a spatial interpolating process and combined with a main-channel signal. The still picture portion and moving picture portion of a first input signal are restored to a field offset sub-sampled first picture signal, and a second input signal is restored to a field offset sub-sampled picture signal, subjected to a size-reducing process by time base compression in the vertical and horizontal directions of the picture and delivered as a second picture signal of the form synchronized in phase with a given position of the first picture signal. The first and second picture signals are time-division multiplexed to deliver a third picture signal onto a picture screen.
Abstract:
When the receiving system for a band-compression image signal receives a dropout signal representing a dropout portion of an image signal, an output of the third delay circuit of the temporal filter for motion detection processing, that is, motion information of an image signal, which precedes by one field, and a dropout signal activate the signal selection control circuit to produce an output signal for controlling the operation of the signal selection circuit, so that an output signal of the first delay circuit is selected for a static portion of an image, and an output signal of the dropout compensation circuit is selected for a moving portion of an image, so as to effect compensation control of the dropout portion of an image signal, thereby preventing deterioration of the quality of an image.
Abstract:
A precharge circuit is provided between bit lines, on the one hand, and a power source potential on the other. The precharge circuit is controlled to be conductive/nonconductive by a clear signal. A control unit is also provided, which controls a decoder when the clear signal is supplied so as to set all the word lines in a selective state. In a clear mode, writing circuits write the same data simultaneously into all of the memory cells.
Abstract:
A defect detection circuit for detecting a defect of a memory cell, a counter for counting defects detected by the defect detect circuit, and a remediableness determination unit for determining whether a count of the counter allows remedy by a redundancy circuit, are provided in a tester for a semiconductor memory or on a memory chip having a redundancy circuit. When the count of the counter is the same as or smaller than the number of at least one of the auxiliary rows and columns of the redundancy circuit, the memory is determined to be "remediable." Otherwise, the memory is determined to be "unremediable." When the count of the counter exceeds the number of at least one of the auxiliary rows and columns of the redundancy circuit, the memory test is interrupted.
Abstract:
In the semiconductor memory device according to the present invention, when there is a defective portion in the memory cells, those memory cells are replaced by redundant memory cells. When defective portions are discovered in the memory cells, the fuse elements corresponding to the memory cells having the defective portions are cut off. Voltages of the select lines connected to the memory cells having the defective portions are held at an L level by the resistors. Due to this, the memory cells having the defective portions are not selected.
Abstract:
A transition detector circuit comprises a first invertor train comprising 2n stages of invertors (n: positive integer including zero), the input thereof being connected to a signal input terminal while the output thereof is connected to an in-phase output terminal, a second invertor train comprising 2n+1 stages of invertors, the input thereof being connected to the signal input terminal, while the output thereof is connected to an antiphase output terminal, a third invertor train comprising at least one stage of an invertor, which is connected to the output of the first invertor train, a fourth invertor train, comprising at least one stage of an invertor, which is connected to the output of the second invertor train, and a fifth invertor train comprising at least one stage of an invertor, which is connected to the signal input terminal. The transition detector circuit further comprises a first switching circuit which turns on or off in response to a signal fed from the third invertor train to produce a pulse signal having a first delay time determined by the first and third invertor trains, and a second switching circuit which turns on or off in response to a signal fed from the fourth invertor train and turns off or on in response to a signal fed from the fifth invertor train to produce a pulse signal having a second delay time determined by the second, fourth and fifth invertor trains.
Abstract:
In a synchronous video detector circuit using a phase-locked loop, the synchronous detection of a video IF signal is effected with a synchronous carrier signal reproduced by the PLL including a voltage-controlled oscillator. Each of a phase comparator of the PLL and a synchronous video detector has its input terminal connected to an output terminal of a video IF amplifier by untuned coupling, and arranged on the output side of the synchronous video detector is a phase-locked mode detector for detecting that the PLL is in its phase-locked mode. The phase-locked mode detector is adapted to control the band width of a low-pass filter of the PLL in either a narrow band mode or a wide band mode and the low-pass filter is controlled to operate in the narrow band mode only when the PLL is in the phase-locked mode of operation. The black and white noise included in the output signal of the synchronous video detector are both cancelled by a noise cancellation circuit including a black noise detector for pulse noise cancellation purposes.
Abstract:
An AGC circuit includes an amplitude synchronous detector using a phase-locked loop (PLL), a variable gain amplifier for supplying a signal to this detector, and a means for controlling the amplification degree of the amplifier to make the output signal level constant. More specifically, the AGC circuit includes a first AGC loop including an AGC detector and a low-pass filter provided before the AGC detector, a second AGC loop including a synchronous detector and a phase synchronized state detecting circuit DC coupled to the output end of the synchronous detector, the output signal from the phase synchronized state detecting circuit being used to control the AGC circuit, and a noise eliminating circuit provided at the final stage for adding the output signal from the phase synchronized state detecting circuit and the output signal from the synchronous detector, or for performing subtraction between both the signals.