摘要:
A method of forming a hydrogenated amorphous germanium carbon (a-GeCx:H) film on a surface of an infrared (IR) transmissive material such as a chalcogenide is provided. The method includes positioning an IR transmissive material in a reactor chamber of a parallel plate plasma reactor and thereafter depositing a hydrogenated amorphous germanium carbon (a-GeCx:H) film on a surface of the IR transmissive material. The depositing is performed at a substrate temperature of about 130° C. or less and in the presence of a plasma which is derived from a gas mixture including a source of germanium, an inert gas, and optionally hydrogen. Optical transmissive components, such as IR sensors and windows, that have improved abrasion-resistance are also provided.
摘要:
A composite article comprises a substrate having at least a substrate surface and a graded-composition coating disposed on a substrate surface. The composition of the coating material varies substantially continuously across its thickness. The coating reduces the transmission rates of oxygen, water vapor, and other chemical species through the substrate such that the composite article can be used effectively as a diffusion barrier to protect chemically sensitive devices or materials. An organic light-emitting device incorporates such a composite article to provide an extended life thereto.
摘要:
A composite article comprises a substrate having at least a substrate surface and a graded-composition coating disposed on a substrate surface. The composition of the coating material varies substantially continuously across its thickness. The coating reduces the transmission rates of oxygen, water vapor, and other chemical species through the substrate such that the composite article can be used effectively as a diffusion barrier to protect chemically sensitive devices or materials. An organic light-emitting device incorporates such a composite article to provide an extended life thereto.
摘要:
A composite article comprises two polymeric substrate layers, each of which has at least a diffusion-inhibiting barrier on one of the surfaces. The diffusion-inhibiting barriers are disposed such that they face each other within the composite articles. Electronic devices are disposed on such composite articles to reduce the rate of diffusion of chemical species in the environment into the devices.
摘要:
The present invention is directed to a salt optic provided with a multilayer coating in order to improve upon the moisture resistance of a salt optic, when compared to the moisture resistance of an uncoated salt optic. In one aspect, the present invention is comprised of a coated salt optic having at least a first coating layer and a second coating layer, the first coating layer being surface-smoothing layer and adhesion layer, and the second coating layer being a moisture barrier layer.
摘要:
A composite article comprises a substrate having at least a substrate surface and a graded-composition coating disposed on a substrate surface. The composition of the coating material varies substantially continuously across its thickness. The coating reduces the transmission rates of oxygen, water vapor, and other chemical species through the substrate such that the composite article can be used effectively as a diffusion barrier to protect chemically sensitive devices or materials. An organic light-emitting device incorporates such a composite article to provide an extended life thereto.